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The problem of embedding

e Seeks to represent the nodes of a graph as points in some space
e One can then use this representation for downstream ML tasks
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Laplacian Eigenmaps

Originally from Belkin and Niyogi [3], it's based on the spectral properties of the
quadratic form of the Laplacian. For a graph with n nodes, the Laplacian satisfies
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[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural Computation, 15(6):1373-1396, 2003



Laplacian Eigenmaps

The Laplacian Eigenmap (LE) embedding of a graph is defined as
miny tr(Y'LY)
s.t.YI'DY =1

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural Computation, 15(6):1373-1396, 2003



Laplacian Eigenmaps

The Laplacian Eigenmap (LE) embedding of a graph is defined as
miny tr(Y'LY)
s.t.YI'DY =1

Lagrange multipliers shows that the columns of the solution Y* are given by the
eigenvectors of the normalized Laplacian, DL, corresponding to the lowest
eigenvalues.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.Neural Computation, 15(6):1373-1396, 2003



GLEE: Geometric Laplacian Eigenmap Embedding

|
X

HFX

L P A Pt



GLEE: Geometric Laplacian Eigenmap Embedding

L P

A

____________

Singular Value Decomposition says that eliminating the rows and columns
corresponding to the lowest singular values give a good approximation of L.
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However, the last eigenvalue of L is always 0, which implies exact equality.
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In a connected graph, L has rank n-1, and only one eigenvalue equal to O.
This implies that S has full rank, i.e., rank n-1.
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This implies that the rows of S point
to the vertices of an (n-1)-D simplex.

[3] K. Devriendt and P. Van Mieghem. The simplex geometry of graphs.The Journal of Complex Networks, 2019.
[4] M. Fiedler. Matrices and graphs in geometry, volume 139 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2011.
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Given a graph G = (V, E), define the d-dimensional GLEE of a node i as the first d
columns of the i-th row of § =P A"?, and is denote it by s..



Similarity-based vs structure-based

Laplacian Eigenmaps

miny tr(Y*LY)
s.t.YIDY =1

Smallest eigenvalues give optimal
distance minimization between
similar nodes.



Similarity-based vs structure-based

Laplacian Eigenmaps

miny tr(Y*LY)
s.t.YIDY =1

Smallest eigenvalues give optimal
distance minimization between
similar nodes.

GLEE

Largest eigenvalues give a
geometric encoding of the graph’s
structure and the best low-rank
approximation.
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Graph Reconstruction

Given the matrix S whose rows are s, how do we reconstruct the graph?
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Given the matrix S whose rows are s, how do we reconstruct the graph?

e Assume d = n-1. In this case, we simply have L =S S”.

freq.




Graph Reconstruction

Given the matrix S whose rows are s, how do we reconstruct the graph?

e Assume d = n-1. In this case, we simply have L =S S”.
e |Ifd<n,then S STis the best rank-d approximation of L.

freq.
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Graph Reconstruction: results
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GLEE improves
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Link Prediction: common neighhbors

In many networks (e.g. social networks), the number of common neighbors is an
excellent predictor of links because of triadic closure.
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Link Prediction: common neighhbors

In many networks (e.g. social networks), the number of common neighbors is an
excellent predictor of links because of triadic closure.




Link Prediction: 3-paths

In other networks with low clustering (e.g. PPl networks), a better predictor is the
number of paths of length 3.




Link prediction: results

Average clustering coefficient
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Thank You!

1.  GLEE replaces distance-minimization with the direct — XE EX
geometric encoding of graph structure.

2. GLEE performs best when the clustering coefficient is i
low and the embedding dimension is high. k

3. What other geometric properties of embeddings can ‘\

we exploit? i" ;

Code: github.com/leotrs/glee
Paper: arxiv.org/abs/1905.09763
Contact: leolleotrs.com
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https://github.com/leotrs/sunbeam
http://www.leotrs.com/science.html

