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Consider a graph G, where each
node is a person and each link is a
connection along which disease
may spread. How to modify the
graph in order to stop the spread?
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node is a person and each link is a
connection along which disease
may spread. How to modify the
graph in order to stop the spread?



The research question

Which nodes should we remove in
order to slow the spread?




The research question

Which nodes should we remove in
order to slow the spread?

“node immunization”



Node Immunization

Given a graph G,

Rank the nodes
Pick the first one
Remove it
Repeat
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Node Immunization

Given a graph G, Different ways of ranking the nodes:
1. Rank the nodes e Degree (number of edges)

2. Pick the first one

3. Remove it

4. Repeat



Node Immunization

Given a graph G, Different ways of ranking the nodes:
1. Rank the nodes e Degree (number of edges)
2. Pick the first one e PageRank
3. Remove it e FEigenvector centrality
4. Repeat e Coreness (k-core index)
e Collective Influence [1]
e NetShield [2]

[11 Morone, F, et al. "Collective influence algorithm to find influencers via optimal percolation in massively large social media." Scientific Reports 6 (2016): 30062.
[2] Chen, C, et al. "Node immunization on large graphs: Theory and algorithms." TKDE 281 (2015): 113-126.



Node Immunization

Given a graph G, Different ways of ranking the nodes:
1. Rank the nodes

2. Pick the first one

3. Remove it

4. Repeat

e This talk



Road Map
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%0 Disease spreads over networks
X The network’s structure determines the spread

Y
,\// Change the structure by removing (immunizing) nodes
,\// Many different ways of doing it

Node immunization with non-backtracking eigenvalues

R, and the epidemic threshold

Non-backtracking matrix

Eigenvalue perturbation

Experiments
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Epidemic Threshold

“This [...] allows to define the concept of epidemic threshold: only if R > 1 (i.e. if a single infected individual
generates on average more than one secondary infection), an infective agent can cause an outbreak of
[substantial] size [...]. If R, <1 (i.e. if a single infected individual generates less than one secondary infection),
the relative size of the epidemic is negligibly small, [...].”

Pastor-Satorras, Romualdo, et al. "Epidemic processes in complex networks." Reviews of modern physics 87.3 (2015): 925.

RO > ]_ |:> Possibility of a substantial outbreak
RO < ]_ |:> Most likely no outbreak

These are the classical definitions, valid for a setting where anyone can contact anyone else.



Epidemic Threshold on Networks

In the case of networks, the epidemic threshold depends on the network structure.
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Epidemic Threshold on Networks

In the case of networks, the epidemic threshold depends on the network structure.

Ry >
Ry <

9
0

|:> Possibility of a substantial outbreak

|:> Most likely no outbreak

9 A ]_ /7' leading eigenvalue of the adjacency matrix

Chakrabarti, Deepayan, et al. "Epidemic thresholds in real networks." ACM Transactions on Information and System Security (TISSEC) 10.4 (2008): 1-26.



Epidemic Threshold on Networks

In the case of networks, the epidemic threshold depends on the network structure.

RO < |:> Most likely no outbreak

9 ]_ /7' leading eigenvalue of the adjacency matrix

0

Karrer, Brian, Mark EJ Newman, and Lenka Zdeborova. "Percolation on sparse networks." Physical review letters 113.20 (2014): 208702.

RO > 9 |:> Possibility of a substantial outbreak
0
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]_ /A leading eigenvalue of the non-backtracking matrix



The research question

Which nodes should we remove in
order to slow the spread?

I

Which nodes should we remove in
order to increase the epidemic
threshold?



The research question

Which nodes should we remove in
order to slow the spread?

I

Which nodes should we remove in
order to increase the epidemic

threshold?

Which nodes should we remove in
order to decrease the leading
eigenvalue?
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The Non-backtracking Matrix
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Block Matrix
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The X Matrix

BC

X =DFE I—.\'/O



Solving for eigenvalues

Solve:

det (B¢ —tI) =0

B =




Solving for eigenvalues

Solve:

det (B¢ —tI) =0

B¢ =

E F

det (B° — tI) = * det (B~ tI)det (T + X)) y—(B—u)”

t2



EFirst Approximation

Solve:

det (B¢ —tI) =0

B¢ =

E F

det (B° — ¢I) = t*! det (B — tI)|det (I + 2X)| v =(B- )

t2




EFirst Approximation

Solve:

det (I+ ’;—X) _ 0

B =
X = DFE

Y =(B—tI)""
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EFirst Approximation

B =

B D
F F
) =1+ Tr (Y X)
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X = DFE
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B =

Solve:

det (I+ ’;—X) _ 0

X = DFE
Y =(B—tI)""



Second Approximation

B D
B¢ =
E F
YX 1 v Xu
det (I—|— t_z) _1+t_22'z Py

Solve:

det (I+ ’;—X) _ 0

X = DFE
Y =(B—tI)""



Solving for eigenvalues

Solve:

det (1+2X) =0

B D
B¢ =
X =DFFE
Y =(B—tI)""
E F
yx\ 1 v Xu
det (I—|— t_z) — 1_|_t_2 =\ 4. ..

u,and v, are the left and right eigenvectors of the
leading eigenvalue A,



Solving for eigenvalues

Solve:
det (I n ’;—X) — 0

B =

X = DFE
Y =(B—tI)""

E F

v; Xug

det(1+%)_1+t—2t > 2t — A1) + T Xuy =0

u,and v, are the left and right eigenvectors of the
leading eigenvalue A,




Third Approximation

B =

E F

t*(t— A1) +viXuy =0  X=DFE

u,and v, are the left and right eigenvectors of the
leading eigenvalue A,



Third Approximation

B =

E F

t2(t — A1) +[vau1]: 0 X=DFE

u,and v, are the left and right eigenvectors of the
leading eigenvalue A,



XNB Gentrality

C __
B = [X-Non-backtracking}

centrality (XNB)

t2(t — A1) +[vau1]: 0 X = DFE

u,and v, are the left and right eigenvectors of the
leading eigenvalue A,



XNB for different target nodes

1. Choose a target node ¢

X, = DFE I_v



XNB for different target nodes

1. Choose a target node ¢ 2. Compute u,v,, and XNB

XNB(c) =vT Xow

BC




XNB for different target nodes

1. Choose a target node ¢ 2. Compute u,v,, and XNB 3. Alternative way
2 i\ 2
XNB(c) = v Xew XNB(c) = (Zz acivzl) — > i (v‘l)
B D
B° =
E F



Xdeg for different target nodes

1. Choose a target node ¢ 2. Compute u,v,, and XNB 3. Alternative way
) .\ 2
XNB(c) = v X, uy XNB(c) = (3 acvt)” — 3, aci (v))
B D
B° =
Xdeg(c) =17 X1




Xdeg for different target nodes

1. Choose a target node ¢ 2. Compute u,v,, and XNB 3. Alternative way
XNB(c) = vT X.uy XNB(e) = (¥, acv)” - ¥ aci (v1)°
B D vl is the NB-centrality
B¢ = 2 2
Xdeg(c) = 17 X1 Xdeg(c) = (X aeid))” — X, aci ()
E F d; = deg(i) —



XNB and the true change in eigenvalue

— p P max
| (ws | (sBM / deg

The XNB centrality is
highly correlated to the
change in the leading
eigenvalue, and therefore
to the change in the
epidemic threshold.
Ranking nodes by their
XNB values is sure to
produce an effective node
immunization strategy.

min
deg
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Algorithm: Immunization with XNB

Input: graph G, integer p
Output: removed, an ordered list of nodes
removed « ()
XNB [i] « XCent (G, i) for each node i
while length(removed) < p do
node < max; XNB [i]
foreach i in G.neighbors[node] do
G.neighbors[i].remove(node)
foreach i in G.neighbors[node] do
foreach j in G.neighbors[i] do

| XNB [j] « XCent (G, i)
G.neighbors[node] < 0
removed.append(node)

return removed

This algorithm can be
implemented using one
of two data structures: an
indexed priority queue
(IPQ), or a hash table
(a.k.a. dictionary, Map).
Each version is more
efficient on different
types of networks.



Algorithm: Scalabhility
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Immunization on graphs
with  heterogeneous
degree distribution
(e.g. a few large hubs).
Smaller y means larger
hubs. Real graphs
typically have 2 <y < 3.



Algorithm: Baselines

degree NS  CI [Xdeg| mB [ xuB

1% | 62.76  61.44 | 62.88 [62.90|, 62.92 | 62.91
BA 2% | 68.84 66.94 | 68.97 [68.99| 69.01 | 69.01
3% | 7242 70.09 | 72.56 |72.57|| 72.59 | 72.59

1% 6.28 6.40 | 641 | 645 6.46 | 6.46
BTER 2% | 10.60 10.72 | 10.80 |10.85|| 10.86 | 10.86
3% | 14.31 14.40 | 14.55 |14.61|| 14.63 | 14.63

1% 3.31 341 | 340 | 343} 344 | 344
SBM 2% 6.00 6.16 | 6.19 | 6.23|| 6.25 | 6.25
3% 8.52 8.66 | 876 | 880 882 | 8.82

1% 1.41 1.17 | 1.50 | 1.52|f 1.63 | 1.63
WS 2% 2.52 2.09 | 297 298| 3.11 | 3.11
3% 3.66 294 | 441 | 441 4.57 | 4.58
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Table 1: Average percentage eigen-drop (larger is better) on synthetic graphs
after removing 1%, 2%, and 3% of the nodes using different strategies.



p=1 p=10 p = 100
degree CI Xdeg , degree CI Xdeg |, degree CI Xdeg

AS-1 0.74 0.74 2.35 6.70 13.51 15.43 | 71.65 78.26 75.92

AS-2 2.02 2.02 4.00 | 17.09 2236 28.17 | 87.60 89.61 87.02

Social-Slashdot 0.95 1.02 1.02 4.63 6.06 6.94 ( 23.65 28.11 30.30
Social-Twitter 2.18 2.18 198 13.21 13.97 13.68 | 41.10 42.88 43.39
Transport-California 0.00 0.00 0.65 2.65 0.65 2.65 5.09 5.09 7.80
Transport-Sydney 0.00 0.00 0.00 0.00 0.00 6.50 0.00 137 9.49
Web-NotreDame 9.34 9.34 934 | 1210 13.79 13.79 | 1437 1437 19.22

Table 2: Average percentage eigen-drop on real networks (larger is better) when
removing p = 1,10, or 100 nodes. Xdeg is effective and has log-linear time in
the number of nodes. Details about the sizes of these datasets are in Table 3 of
the appendix.



p=1 p=10 p = 100
degree CI Xdeg , degree CI Xdeg |, degree CI Xdeg

AS-1 0.74 0.74 2.35 6.70 13.51 15.43 | 71.65 78.26 75.92

AS-2 2.02 2.02 4.00 | 17.09 2236 28.17 | 87.60 89.61 87.02

Social-Slashdot 0.95 1.02 1.02 4.63 6.06 6.94 ( 23.65 28.11 30.30
Social-Twitter 2.18 2.18 198 13.21 13.97 13.68 | 41.10 4288 43.39
Transport-California 0.00 0.00 0.65 2.65 0.65 2.65 5.09 5.09 7.80
Transport-Sydney 0.00 0.00 0.00 0.00 0.00 6.50 0.00 137 9.49
Web-NotreDame 9.34 9.34 934 | 1210 13.79 13.79 | 1437 1437 19.22

Table 2: Average percentage eigen-drop on real networks (larger is better) when
removing p = 1,10, or 100 nodes. Xdeg is effective and has log-linear time in
the number of nodes. Details about the sizes of these datasets are in Table 3 of
the appendix.



p=1 p=10 p =100
degree CI Xdeg , degree CI Xdeg |, degree CI Xdeg
AS-1 0.74 0.74 2.35 6.70 13.51 15.43 | 71.65 78.26 75.92
AS-2 2.02 202 4.00 | 17.09 22.36 28.17 | 87.60 89.61 87.02
Social-Slashdot 0.95 1.02 1.02 4.63 6.06 6.94 23.65 28.11 30.30
Social-Twitter 2.18 2.18 1.98 13.21 13.97 13.68 41.10 42.88 43.39
Transport-California 0.00 0.00 0.65 2.65 0.65 2.65 5.09 5.09 7.80
Transport-Sydney 0.00 0.00 0.00 0.00 0.00 6.50 0.00 7.37 9.49
Web-NotreDame 9.34 9.34 934 | 1210 13.79 13.79 | 14.37 14.37 19.22

Table 2: Average percentage eigen-drop on real networks (larger is better) when
removing p = 1,10, or 100 nodes. Xdeg is effective and has log-linear time in
the number of nodes. Details about the sizes of these datasets are in Table 3 of

the appendix.




] Lo _»

vaﬂl

1. Diseases spread on networks!
2. Node immunization: remove node to slow the spread
3. Epidemic threshold = leading non-backtracking eigenvalue
4. XNB is a great way to rank nodes for immunization
www.leotrs.com
https://arxiv.org/abs/2002.12309 leo@leotrs.com

@_leotrs



