Northeastern University Network Science Institute

netsi

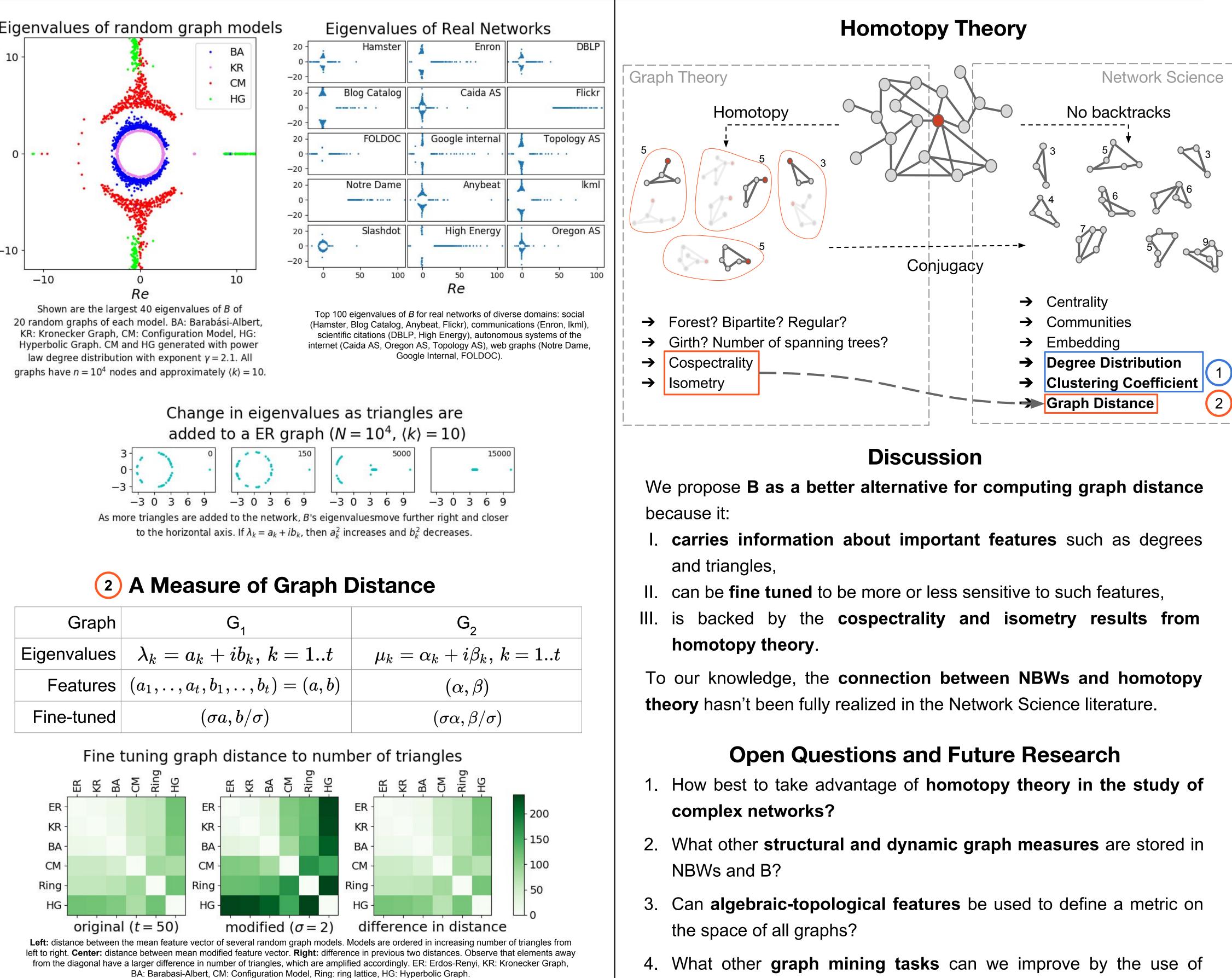
A Study of Cycle Length Spectra: **Connecting Homotopy to Network Science**

Ak	ostract	Ei
 We highlight the connection (NBWs) and homotopy theory 		1
 We show how NBWs track st degree distribution and clusteri 	tructural graph measures such as the graph measures such as the	E
 We propose a graph distance 	measure based on NBWs.	
Nonbackt	racking Matrix	-1
 Given a graph G with m edges, 2m × 2m matrix. 	, the nonbacktracking matrix B is a	
• Each edge in G is represented $u \rightarrow v$ and $v \rightarrow u$.	by two rows in B , one per orientation:	
• For two edges $u \rightarrow v$ and $k \rightarrow l$, E		
${oldsymbol{\mathcal{B}}_{k ightarrow l,u ightarrow v}}$	$=\delta_{vk}(1-\delta_{ul})$	
where δ_{ij} is the Kronecker delt • Example: There is a 1 in the er $k \rightarrow l$ when $u \neq l$ and $v = k$; and	ntry indexed by row $u \rightarrow v$ and column	
1 Computing B and its Properties		
We compute Step 1: compute	BintwostepsStep2:computeBentrywise:	
$M^+_{x,u o v} = \delta_{xu} \qquad O(m)$	$C_{k ightarrow l,u ightarrow v}=\delta_{vk}$	
$egin{array}{lll} M^{x,u ightarrow v} = \delta_{xv} & O(m) \ C = (M^+)^T M^- & O(n\langle k^2 angle) \end{array}$	$ig B_{k o l, u o v} = C_{k o l, u o v} (1 - C_{u o v, k o l})$	
• Time complexity $O(m + n\langle k^2 \rangle)$	•	
 For homogeneous networks: O 	(m+n).	
	ons: between $O(m + n)$ and $O(n^2)$.	
• The number of non-zero eleme distribution: $nnz(\mathbf{B}) = n\langle k^2 \rangle - n$	nts of B is related to the the degree $\langle k \rangle$.	
	ues of B , then the number of triangles is	
$tr(B^3) = 2$	$\sum_k a_k (a_k^2 - 3b_k^2)$	
• If $(\sum_k a_k^2)$ is large and $(\sum_k b_k^2)$ is s	small, then number of triangles is large.	

We thank Evimaria Terzi and Pablo Suárez Serrato for their contributions to this work. Torres and Eliassi-Rad were supported by NSF CNS-1314603, NSF IIS-1741197, and DTRA HDTRA1-10-1-0120.

Leo Torres *leo@leotrs.com*

Tina Eliassi-Rad tina@eliassi.org



- NBWs and B?