A Study of Cycle Length Spectra: Connecting Homotopy to Network Science

Tina Eliassi-Rad
tina@eliassi.org

Abstract

- We highlight the connection between nonbacktracking walks (NBWs) and homotopy theory from algebraic topology
- We show how NBWs track structural graph measures such as the degree distribution and clustering coefficient.
- We propose a graph distance measure based on NBWs

Nonbacktracking Matrix

- Given a graph G with m edges, the nonbacktracking matrix B is a $2 m \times 2 m$ matrix.
- Each edge in G is represented by two rows in \mathbf{B}, one per orientation: $u \rightarrow v$ and $v \rightarrow u$.
- For two edges $u \rightarrow v$ and $k \rightarrow I, \mathbf{B}$ is given by

$$
B_{k \rightarrow l, u \rightarrow v}=\delta_{v k}\left(1-\delta_{u l}\right)
$$

where $\delta_{i j}$ is the Kronecker delta.

- Example: There is a 1 in the entry indexed by row $u \rightarrow v$ and column $k \rightarrow l$ when $u \neq l$ and $v=k$; and a 0 otherwise.

Computing B and its Properties

- Time complexity $O\left(m+n\left\langle k^{2}\right\rangle\right)$.
- For homogeneous networks: $O(m+n)$
- For power-law degree distributions: between $O(m+n)$ and $O\left(n^{2}\right)$.
- The number of non-zero elements of \mathbf{B} is related to the the degree distribution: $n n z(\mathbf{B})=n\left\langle k^{2}\right\rangle-n\langle k\rangle$.
- If $\lambda_{k}=\alpha_{k}+i \beta_{k}$ are the eigenvalues of \mathbf{B}, then the number of triangles is

$$
\operatorname{tr}\left(B^{3}\right)=\sum_{k} a_{k}\left(a_{k}^{2}-3 b_{k}^{2}\right)
$$

- If $\left(\sum_{k} a_{k}^{2}\right)$ is large and $\left(\sum_{k} b_{k}^{2}\right)$ is small, then number of triangles is large.

Leo Torres
leo@/eotrs.com

Discussion

We propose \mathbf{B} as a better alternative for computing graph distance because it:
l. carries information about important features such as degrees and triangles,
II. can be fine tuned to be more or less sensitive to such features,
III. is backed by the cospectrality and isometry results from homotopy theory.

To our knowledge, the connection between NBWs and homotopy theory hasn't been fully realized in the Network Science literature.

Open Questions and Future Research

1. How best to take advantage of homotopy theory in the study of complex networks?
2. What other structural and dynamic graph measures are stored in NBWs and B?
3. Can algebraic-topological features be used to define a metric on the space of all graphs?
4. What other graph mining tasks can we improve by the use of NBWs and B?
