Geometric Aspects of Mining

 Complex NetworksLeo Torres
PhD candidate

Network Science Institute, Northeastern University

Geometric Aspects of

 Mining
Complex Networks

Geometric Aspects of Mining

Complex Networks

What concepts and procedures can we take from geometry and topology and apply to mining and learning from complex networks?

Distances

Embeddings

Distances

Embeddings

Non-backtracking cycles: length spectrum theory and graph mining applications

Torres, L., Suárez-Serrato, P. and Eliassi-Rad, T. Appl Netw Sci (2019) 4: 41.

GLEE: Geometric Laplacian Eigenmap Embedding

Torres, L., Chan, K. S. and Eliassi-Rad, T. Journal of Complex Networks, Volume 8, Issue 2, April 2020, cnaa007.

NBD: Non-Backtracking Distance

Pablo Suárez-Serrato, UNAM

Tina Eliassi-Rad, NEU

Spoiler Alert!

Networks: the non-backtracking eigenvalues track important descriptors like degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring distance.

Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

Spoiler Alert!

Networks: the non-backtracking eigenvalues track important descriptors like degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring distance.

Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

Spoiler Alert!

Networks: the non-backtracking eigenvalues track important descriptors like

 degree distribution and triangles.
Machine Learning: non-backtracking eigenvalues are a great way of measuring

 distance.Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

The Length Spectrum

1. Given a graph $G=(V, E)$ and a node v,

The Length Spectrum

1. Given a graph $G=(V, E)$ and a node v, consider the set of all closed walks that start and end at v .

$0_{0}^{9} 0$

The Length Spectrum

2. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint...

The Length Spectrum
2. ... and retain the shortest walk in each subset.

The Length Spectrum

2. This set is the fundamental group of G with basepoint v.

The Length Spectrum

3. Walks are equivalent if they are equal save for tree-like parts that don't go through the

The Length Spectrum

3. This is the set of non-backtracking cycles (NBCs) of G.

NBCs

The Length Spectrum

4. \mathcal{L} is defined on $\pi_{1}(G, v)$ and assigns each walk the length of its "shaved" version.

$$
\pi_{1}(G, v)
$$

$$
\mathcal{L}: \pi_{1}(G, v) \rightarrow \mathbb{R}
$$

NBCs

The Length Spectrum

4. \mathcal{L} is defined on $\pi_{1}(G, v)$ and assigns each walk the length of its "shaved" version.

NBCs

The Length Spectrum

The Length Spectrum of a graph characterizes its 2-core uniquely up to isomorphism.

Modifying the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

Modifying the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

Two assumptions	Two problems
$G \rightarrow \mathcal{L}_{G}$	How to compute?
$d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)$	How to compare?

Modifying the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

Two assumptions	Two problems	Two solutions
$G \rightarrow \mathcal{L}_{G}$	How to compute?	Outputs instead of inputs
$d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)$	How to compare?	Partition the set of outputs

Modifying the Length Spectrum

Non-backtracking matrix

$$
G=(V, E)
$$

$$
|E|=m
$$

Graph Distance

Fraph Distance

Given two graphs G, H and an integer \boldsymbol{r}, write λ_{k}, μ_{k} for the eigenvalues of their corresponding non-backtracking matrices, $k=1,2, \ldots, r$. Let Λ and M be the cumulative density function of the respective spectral densities.

Define the distance between G and H by

$$
d_{r}(G, H)=\sqrt{\iint|\Lambda(x, y)-M(x, y)|^{2} d x d y}
$$

Properties: hubs

Configuration model ($\mathrm{n}=10 \mathrm{k},\langle\mathrm{k}\rangle=10, \gamma=2.1$)

Properties: hubs are imaginary

Configuration model ($\mathrm{n}=10 \mathrm{k},\langle\mathrm{k}\rangle=10, \gamma=2.1$)

fewer hubs

Properties: triangles

ER graph (n = 10k, p = 0.001)

Properties: triangles

Examples: clustering

Examples: clustering

Summary

The non-backtracking eigenvalues track descriptors like degree distribution and triangles and can find patterns and anomalies; THEREFORE they are a great way of measuring distance BECAUSE they contain similar information to the length spectrum, which characterizes the 2-core of an unweighted graph uniquely.

Summary: geometry

- The derivation and algorithm are based on algebraic topology.
- Intrinsic topology/geometry of each graph.
- The set of eigenvalues can be considered as a form of "graph embedding".
- Geometry of the set of all graphs, as represented by their eigenvalues.

BHFF: Feometric Laplacian Figenmap Fmbedding

Kevin S. Chan, ARL

Tina Eliassi-Rad, NEU

Leo Torres, K. S. Chan and T. Eliassi-Rad. GLEE: Geometric Laplacian Eigenmap Embedding. J. of Comp. Net., Volume 8, Issue 2, April 2020, cnaa007.

Work supported by NSF CNS-1314603, NSF
IIS-1741197, Army Research Laboratory Cooperative Agreement W911NF-13-2-0045.

Spoiler Alert!

Mathematics: there is a bijection between undirected graphs on n nodes and $\mathrm{n}-1$ dimensional simplices.

Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering coefficient is high.

Spoiler Alert!

Mathematics: there is a bijection between undirected graphs on n nodes and $\mathrm{n}-1$

 dimensional simplices.Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering coefficient is high.

Spoiler Alert!

Mathematics: there is a bijection between undirected graphs on n nodes and $\mathrm{n}-1$

 dimensional simplices.Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering coefficient is high.

GLFE: Geometric Laplacian Figenmap Fmbedding

HLFB: Feometric Laplacian Figenmap Fmbedding

L

P

Λ

P^{T}

Singular Value Decomposition says that eliminating the rows and columns corresponding to the lowest singular values give a good approximation of \boldsymbol{L}.

HLFP: Feometric Laplacian Figenmap Fmbedding

However, the last eigenvalue of \boldsymbol{L} is always $\mathbf{0}$, which implies exact equality.

GLPE: Geometric Laplacian Figenmap Fmbedding

GLPE: Geometric Laplacian Figenmap Fmbedding

GLPE: Geometric Laplacian Figenmap Fmbedding

HLFP: Feometric Laplacian Figenmap Fmbedding

In a connected graph, \boldsymbol{L} has rank $\boldsymbol{n} \mathbf{- 1}$, and only one eigenvalue equal to $\mathbf{0}$. This implies that \boldsymbol{S} has full rank, i.e., rank \boldsymbol{n}-1.

HLFP: Feometric Laplacian Figenmap Fmbedding

This implies that the rows of \boldsymbol{S} point to the vertices of an ($\mathbf{n}-1$)-D simplex.

Hㅐㅍㅏ: Feometric Laplacian Figenmap Fmbedding

L

S

X
S^{T}

Given a graph $\mathbf{G}=\mathbf{(V , E)}$, define the \boldsymbol{d}-dimensional GLEE of a node \boldsymbol{i} as the first \boldsymbol{d} columns of the \boldsymbol{i}-th row of $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{\Lambda}^{1 / 2}$, and is denote it by $\boldsymbol{s}_{\boldsymbol{i}}$.

Braph Reconstruction

Given the matrix \boldsymbol{S} whose rows are \boldsymbol{s}_{p}, how do we reconstruct the graph?

Graph Reconstruction

Given the matrix \mathbf{S} whose rows are \boldsymbol{s}_{i}, how do we reconstruct the graph?

- Assume $\boldsymbol{d}=\boldsymbol{n}$-1. In this case, we simply have $\boldsymbol{L}=\boldsymbol{S} \boldsymbol{S}^{\boldsymbol{T}}$.

freq.

Graph Reconstruction

Given the matrix \mathbf{S} whose rows are \boldsymbol{s}_{i}, how do we reconstruct the graph?

- Assume $\boldsymbol{d}=\boldsymbol{n} \mathbf{- 1}$. In this case, we simply have $\boldsymbol{L}=\boldsymbol{S} \boldsymbol{S}^{\boldsymbol{T}}$.
- If $\boldsymbol{d}<\boldsymbol{n}$, then $\boldsymbol{S} \boldsymbol{S}^{\boldsymbol{T}}$ is the best rank-d approximation of \boldsymbol{L}.

Graph Reconstruction: results

Same embedding dimension, similar network size, but different average clustering.

Link Prediction: common neighbors

In many networks (e.g. social networks), the number of common neighbors is an excellent predictor of links because of triadic closure.

Link Prediction: common neighbors

In many networks (e.g. social networks), the number of common neighbors is an excellent predictor of links because of triadic closure.

Link Prediction: common neighbors

In many networks (e.g. social networks), the number of common neighbors is an excellent predictor of links because of triadic closure.

Link Prediction: common neighbors

In many networks (e.g. social networks), the number of common neighbors is an excellent predictor of links because of triadic closure.

Link Prediction: 3-paths

In other networks with low clustering (e.g. PPI networks), a better predictor is the number of paths of length 3 .

Link prediction: results

Average clustering coefficient

Summary

There is a bijection between undirected graphs and simplices, THEREFORE we can encode graph structure in geometric terms using GLEE. IN CONTRAST, other methods usually make assumptions about the structure of the graph and therefore perform well only when those assumptions hold (e.g. high clustering coefficient).

Summary: Feometry

- What else can we do with the geometry of embeddings?
- How can graphs be encoded geometrically?

Perturbations

Summary

The largest eigenvalue behaves in predictable ways. THEREFORE, monitoring it should provide a good defense against adversarial attack. FOR EXAMPLE, to immunize against certain recurrent state dynamics, first remove hubs, then break up the cliques.

0
$v_{1}^{T} X u_{1}$

Perturbations

Node Immunization with

 Non-backtracking Eigenvalues

Optimizing Graph Structure for
Targeted Diffusion

Yu, S., Torres, L., Alfeld, S., Eliassi-Rad, T., and Vorobeychik, Y. Preprint. arXiv:2008.05589 (2020).

Feometry..?

Gracias!

Currently on the job market as a postdoc or assistant professor at the intersection of network science, computer science, and mathematics. Please get in touch!

leo@leotrs.com a www.leotrs.com
 @ _leotrs
 / leotrs

