Geometric Aspects of Mining Complex Networks

Leo Torres PhD candidate

Network Science Institute, Northeastern University

Geometric Aspects of

Mining

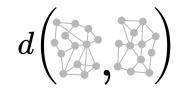
Complex Networks

Geometric Aspects of Mining

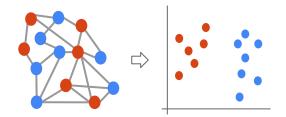
Complex Networks

What concepts and procedures can we take from geometry and topology and apply to mining and learning from complex networks?

Distances

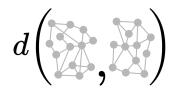


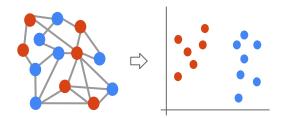
Embeddings



Distances

Embeddings





Non-backtracking cycles: length spectrum theory and graph mining applications

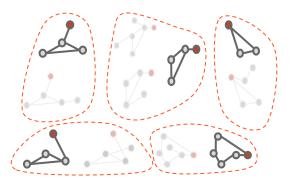
<u>Torres, L.</u>, Suárez-Serrato, P. and Eliassi-Rad, T. Appl Netw Sci (2019) 4: 41.

GLEE: Geometric Laplacian Eigenmap Embedding

<u>Torres, L.</u>, Chan, K. S. and Eliassi-Rad, T. Journal of Complex Networks, Volume 8, Issue 2, April 2020, cnaa007.

NBD: Non-Backtracking Distance

Pablo Suárez-Serrato, UNAM



Tina Eliassi-Rad, NEU

Torres, L., Suárez-Serrato, P. and Eliassi-Rad, T. **Non-backtracking cycles: length spectrum theory and graph mining applications**. Appl Netw Sci (2019) 4: 41.

Supported by **NSF** CNS-1314603, **NSF** IIS-1741197, and **DTRA** HDTRA1-10-1-0120.

Networks: the non-backtracking eigenvalues track important descriptors like degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring distance.

Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

Networks: the non-backtracking eigenvalues track important descriptors like degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring distance.

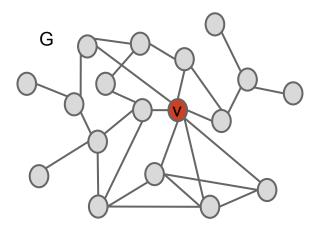
Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

Networks: the non-backtracking eigenvalues track important descriptors like degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring distance.

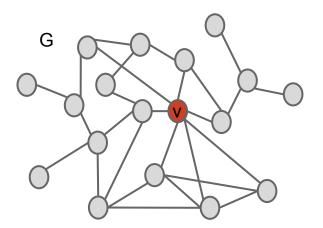
Mathematics: the length spectrum of an unweighted graph characterizes its 2-core uniquely up to isomorphism.

1. Given a graph G = (V, E) and a node v,

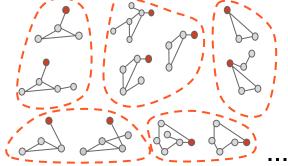


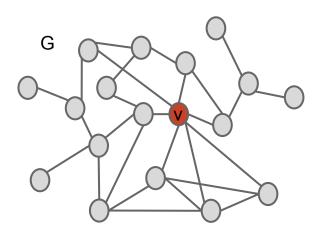
1. Given a graph G = (V, E) and a node v, consider the set of all closed walks that start and end at v.

 \sim \sim \sim \sim \sim

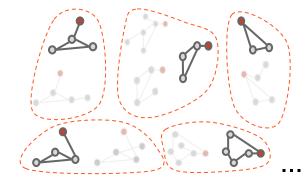


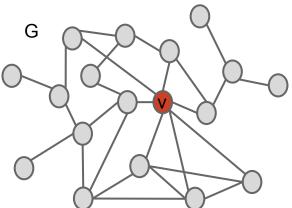
2. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint...



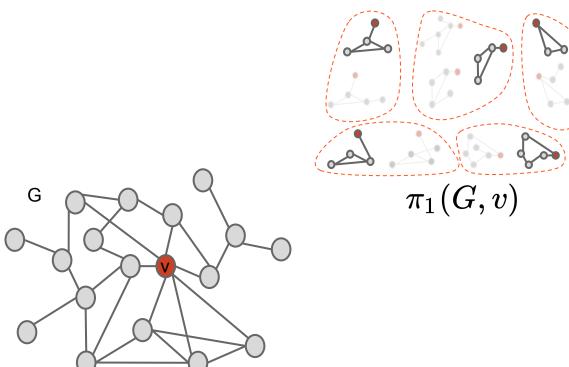


2. ... and retain the shortest walk in each subset.

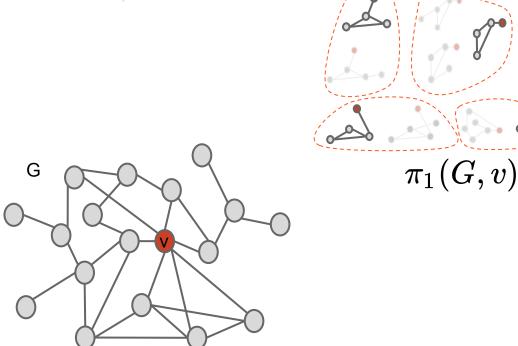


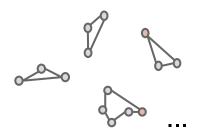


2. This set is the fundamental group of G with basepoint v.

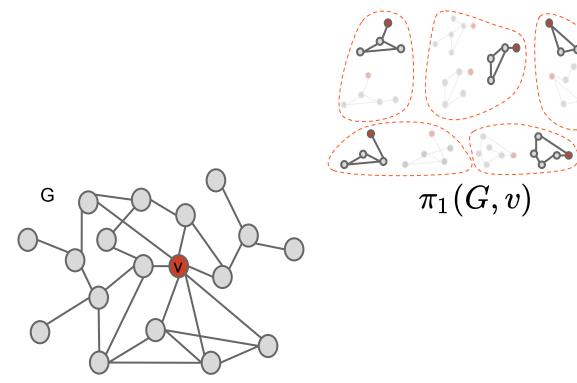


3. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint.





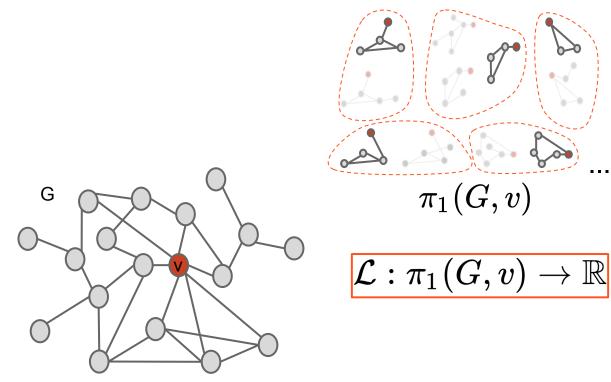
3. This is the set of non-backtracking cycles (NBCs) of G.

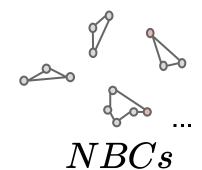


NBCs

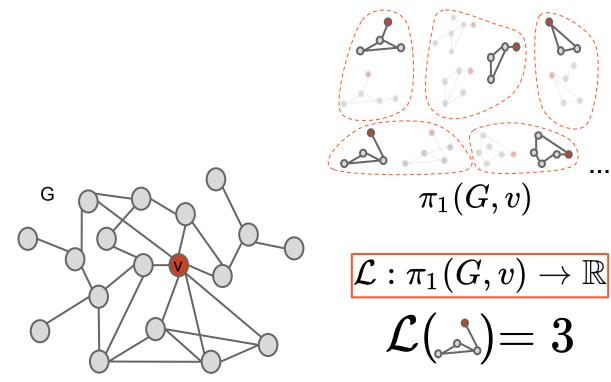
17

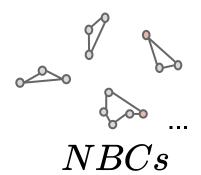
4. \mathcal{L} is defined on $\pi_1(G, v)$ and assigns each walk the length of its "shaved" version.





4. \mathcal{L} is defined on $\pi_1(G, v)$ and assigns each walk the length of its "shaved" version.





19

The Length Spectrum of a graph characterizes **its 2-core** uniquely up to isomorphism.

Constantine, D., and Lafont, J.-F. **Marked Length Rigidity for One-Dimensional Spaces.** Journal of Topology and Analysis, 2018.

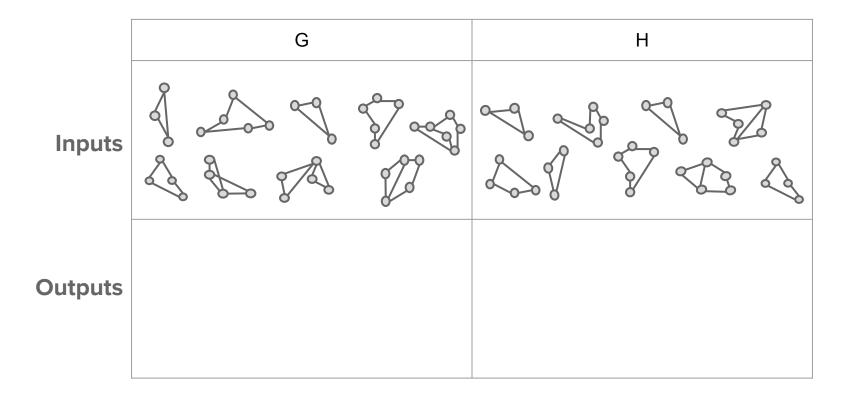
 $d(G,H) = d(\mathcal{L}_G,\mathcal{L}_H)$

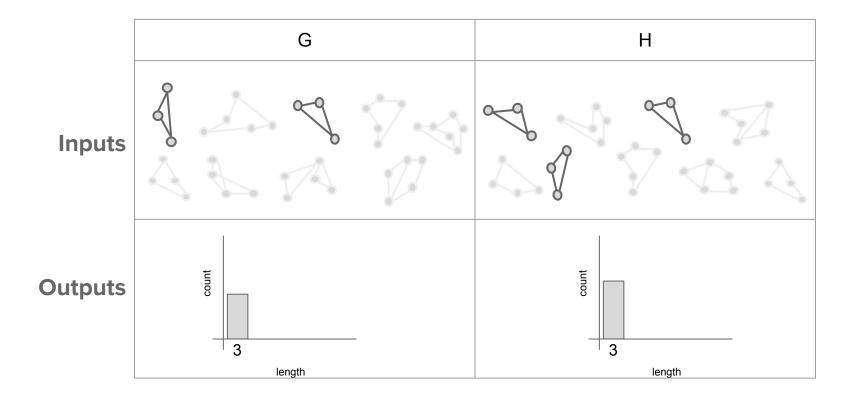
 $d(G,H) = d(\mathcal{L}_G,\mathcal{L}_H)$

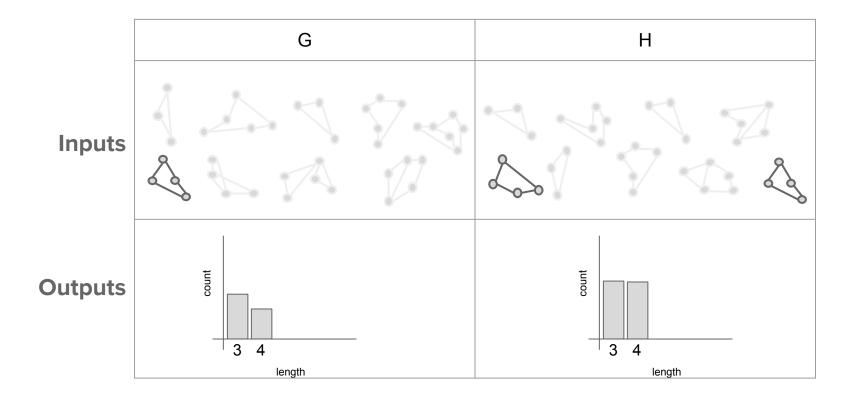
Two assumptions	Two problems
$G o \mathcal{L}_G$	How to compute?
$d(\mathcal{L}_G,\mathcal{L}_H)$	How to compare?

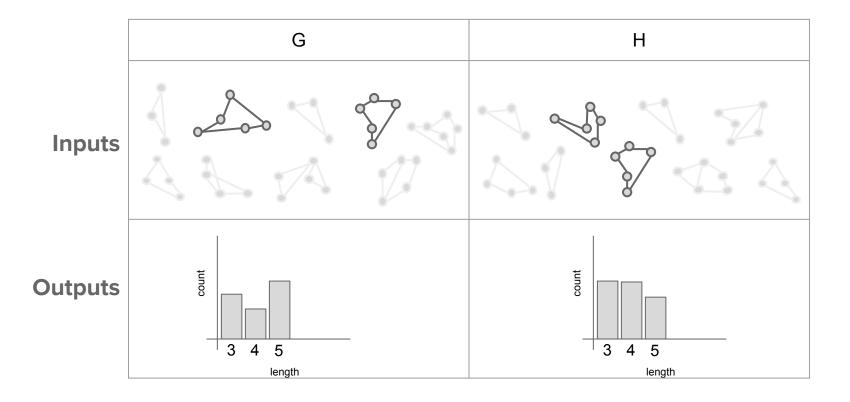
 $d(G,H)=d(\mathcal{L}_G,\mathcal{L}_H)$

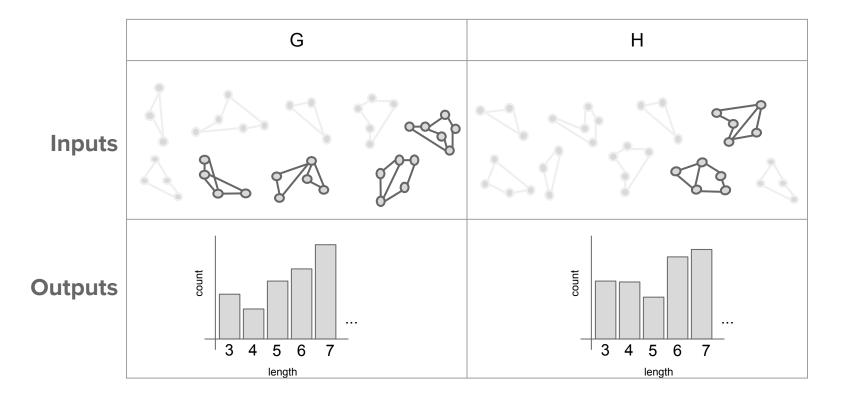
Two assumptions	Two problems	Two solutions
$G o \mathcal{L}_G$	How to compute?	Outputs instead of inputs
$d(\mathcal{L}_G,\mathcal{L}_H)$	How to compare?	Partition the set of outputs



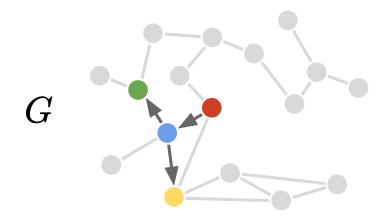


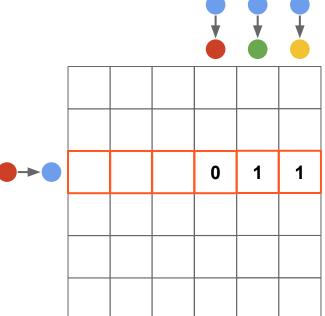






Non-backtracking matrix



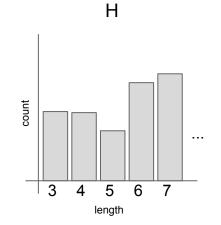


B

G = (V, E)|E| = m

Graph Distance





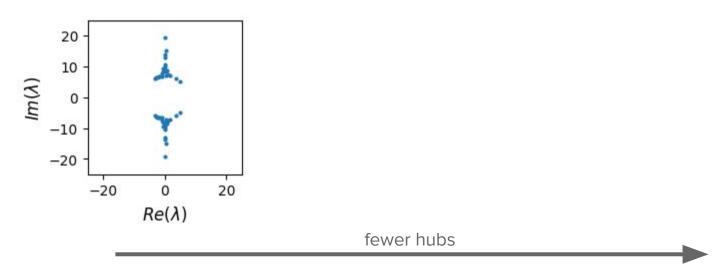
Graph Distance

Given two graphs G, H and an integer r, write λ_k, μ_k for the eigenvalues of their corresponding non-backtracking matrices, k = 1, 2, ..., r. Let Λ and M be the cumulative density function of the respective spectral densities. Define the distance between G and H by

$$d_r(G,H) = \sqrt{\iint \left|\Lambda(x,y) - M(x,y)
ight|^2 dx dy}$$

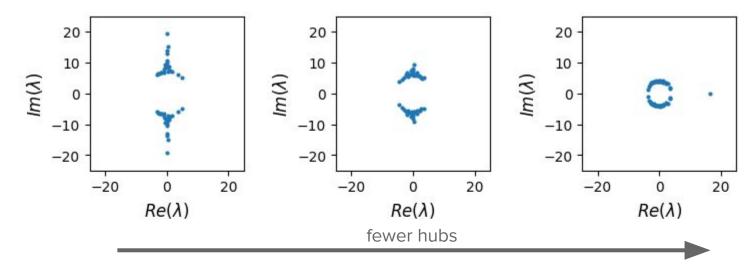
Properties: hubs

Configuration model (n = $10k, \langle k \rangle = 10, \gamma = 2.1$)



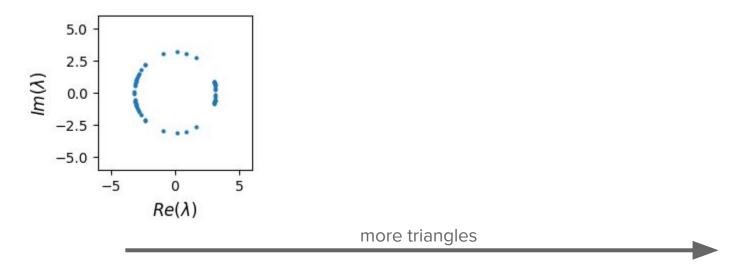
Properties: hubs are imaginary

Configuration model (n = $10k, \langle k \rangle = 10, \gamma = 2.1$)



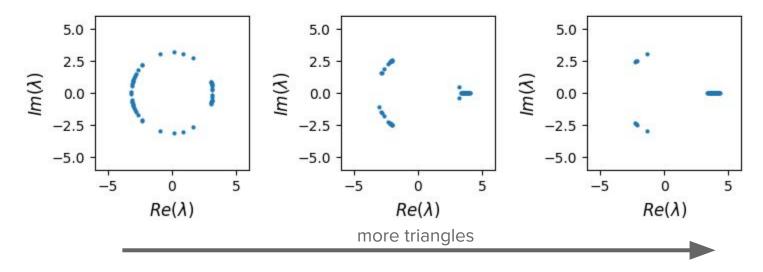
Properties: triangles

ER graph (n = 10k, p = 0.001)

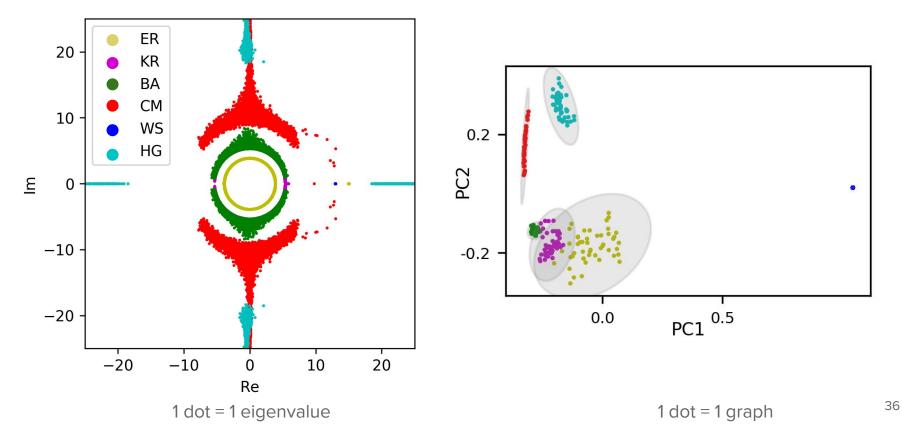


Properties: triangles

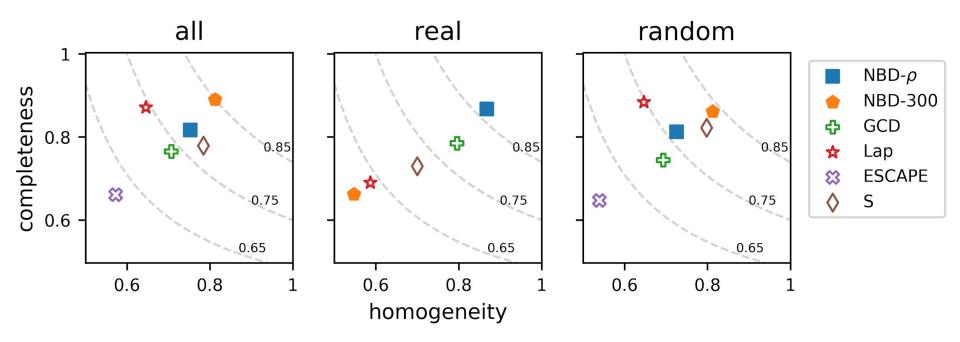
ER graph (n = 10k, p = 0.001)



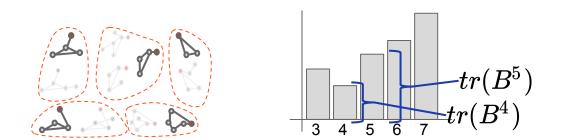
Examples: clustering

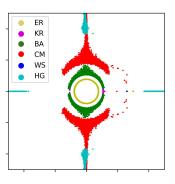


Examples: clustering



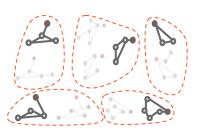
The non-backtracking eigenvalues track descriptors like degree distribution and triangles and can find patterns and anomalies; THEREFORE they are a great way of measuring distance BECAUSE they contain similar information to the length spectrum, which characterizes the 2-core of an unweighted graph uniquely.



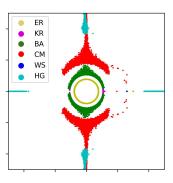


Summary: geometry

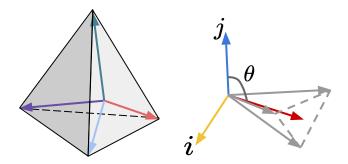
- The derivation and algorithm are based on **algebraic topology**.
 - Intrinsic topology/geometry of each graph.
- The set of eigenvalues can be considered as a form of "graph embedding".
 - Geometry of the set of all graphs, as represented by their eigenvalues.







Kevin S. Chan, ARL



Tina Eliassi-Rad, NEU

Leo Torres, K. S. Chan and T. Eliassi-Rad. **GLEE: Geometric Laplacian Eigenmap Embedding**. J. of Comp. Net., Volume 8, Issue 2, April 2020, cnaa007.

Work supported by **NSF** CNS-1314603, **NSF** IIS-1741197, Army Research Laboratory **Cooperative Agreement** W911NF-13-2-0045.

Mathematics: there is a bijection between undirected graphs on n nodes and n-1 dimensional simplices.

Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering coefficient is high.

Mathematics: there is a bijection between undirected graphs on n nodes and n-1 dimensional simplices.

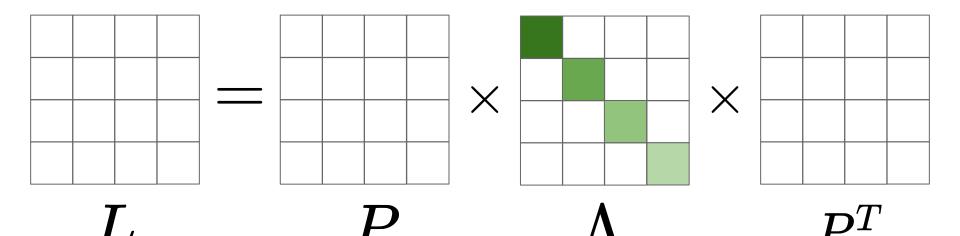
Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

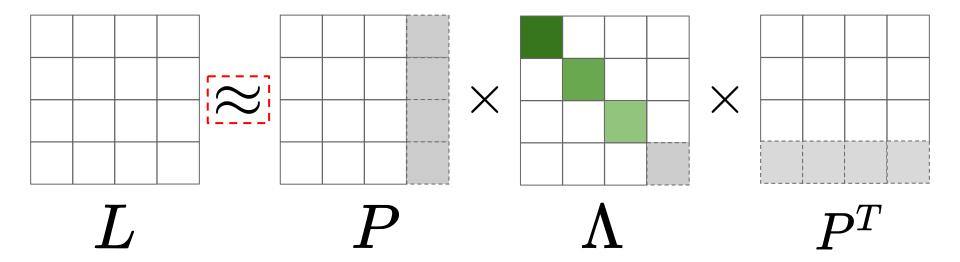
Machine Learning: some embedding methods perform well only when clustering coefficient is high.

Mathematics: there is a bijection between undirected graphs on n nodes and n-1 dimensional simplices.

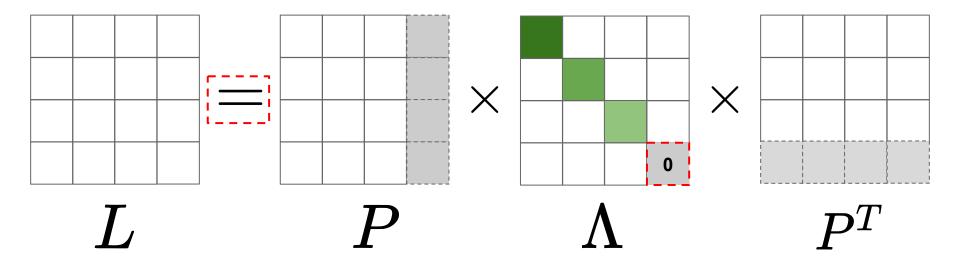
Networks: we can encode graph structure in geometric terms using the simplex geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering coefficient is high.



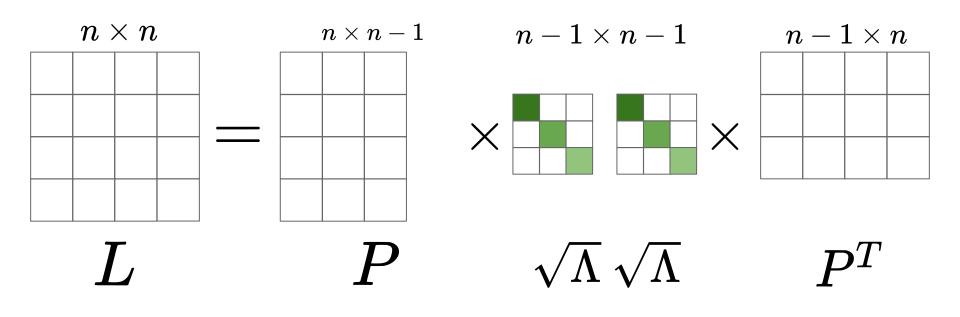


Singular Value Decomposition says that eliminating the rows and columns corresponding to the lowest singular values give a good approximation of *L*.

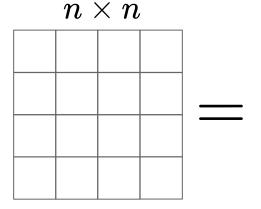


However, the last eigenvalue of *L* is always **0**, which implies exact equality.



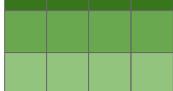


Х

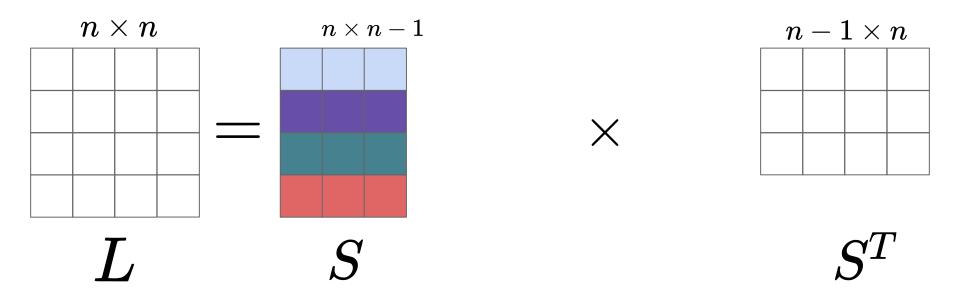


n imes n-1

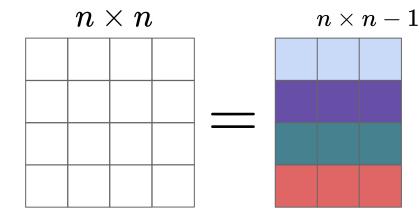


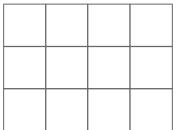


 $S = P\sqrt{\Lambda}$



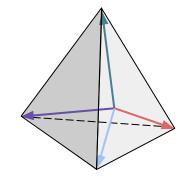
In a connected graph, *L* has rank *n-1*, and only one eigenvalue equal to *O*. This implies that *S* has full rank, i.e., rank *n-1*.



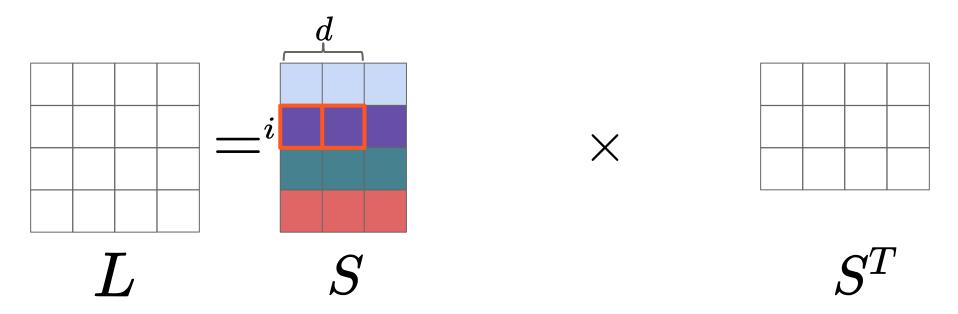


This implies that the rows of **S** point to the vertices of an **(n-1)**-D **simplex**.

K. Devriendt and P. Van Mieghem. **The simplex geometry of graphs**. The Journal of Complex Networks, 2019.



Х



Given a graph **G** = (**V**, **E**), define the *d*-dimensional **GLEE** of a node *i* as the first *d* columns of the *i*-th row of $S = P \Lambda^{1/2}$, and is denote it by s_i .

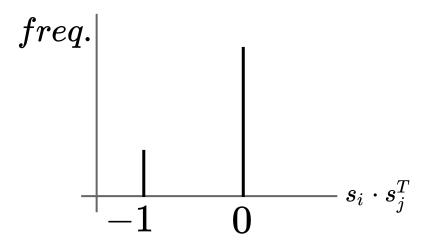
Graph Reconstruction

Given the matrix **S** whose rows are s_{μ} , how do we reconstruct the graph?

Graph Reconstruction

Given the matrix **S** whose rows are s_i , how do we reconstruct the graph?

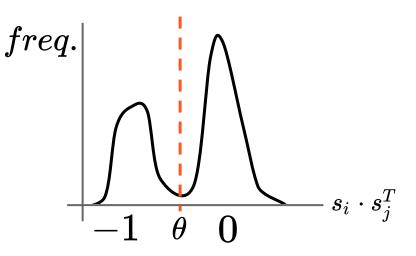
• Assume d = n-1. In this case, we simply have $L = S S^{T}$.



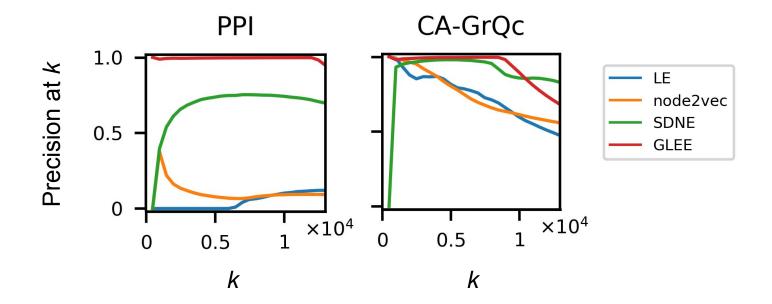
Graph Reconstruction

Given the matrix **S** whose rows are s_{i} , how do we reconstruct the graph?

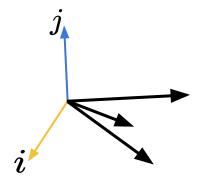
- Assume d = n-1. In this case, we simply have $L = S S^{T}$.
- If d < n, then **S S**^T is the best rank-d approximation of **L**.

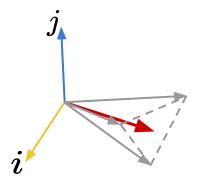


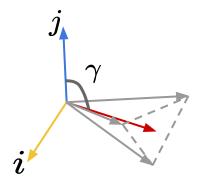
Graph Reconstruction: results



Same embedding dimension, similar network size, but different average clustering.

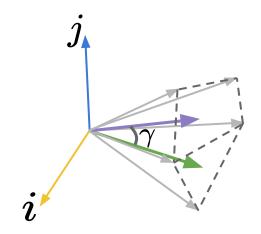






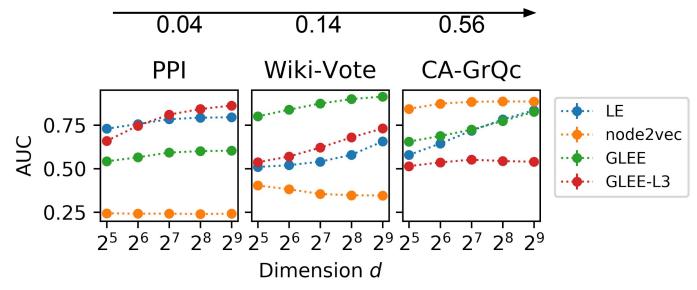
Link Prediction: 3-paths

In other networks with **low clustering** (e.g. PPI networks), a better predictor is the number of paths of length 3.

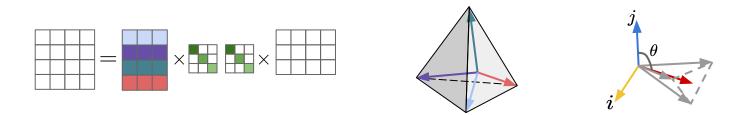


Link prediction: results

Average clustering coefficient

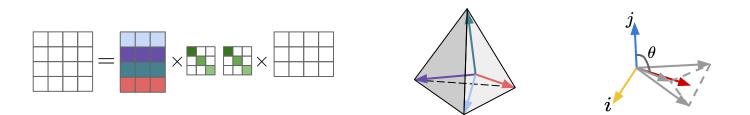


There is a bijection between undirected graphs and simplices, THEREFORE we can encode graph structure in geometric terms using GLEE. IN CONTRAST, other methods usually make assumptions about the structure of the graph and therefore perform well only when those assumptions hold (e.g. high clustering coefficient).

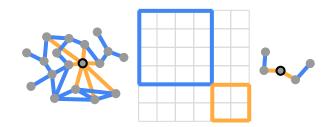


Summary: Geometry

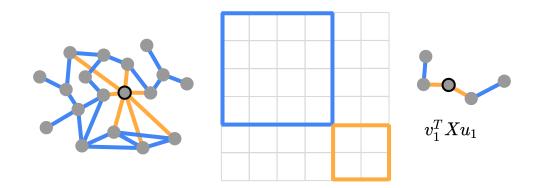
- What else can we do with the geometry of embeddings?
- How can graphs be encoded geometrically?



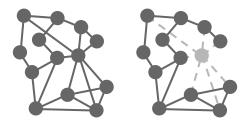
Perturbations



The largest eigenvalue behaves in predictable ways. THEREFORE, monitoring it should provide a good defense against adversarial attack. FOR EXAMPLE, to immunize against certain recurrent state dynamics, first remove hubs, then break up the cliques.



Perturbations

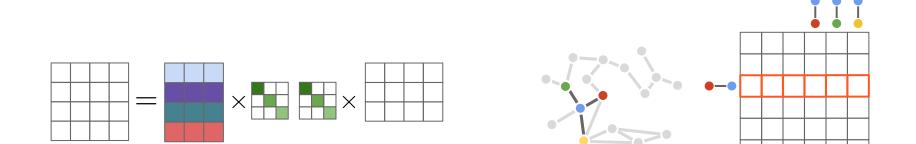


Node Immunization with Non-backtracking Eigenvalues

<u>Torres, L.</u>, Chan, K.S., Tong, H., Eliassi-Rad, T. Preprint. arXiv:2002.12309 (2020).

Optimizing Graph Structure for Targeted Diffusion

Yu, S., <u>Torres, L.</u>, Alfeld, S., Eliassi-Rad, T., and Vorobeychik, Y. Preprint. arXiv:2008.05589 (2020).



Work supported by **NSF** CNS-1314603, **NSF** IIS-1741197, Army Research Laboratory **Cooperative Agreement** W911NF-13-2-0045.

Gracias!

Currently on the **job market** as a **postdoc** or **assistant professor** at the intersection of network science, computer science, and mathematics. Please get in touch!

leo@leotrs.com ☑ @_leotrs ☑ www.leotrs.com ☆ /leotrs ☑