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What concepts and 
procedures can we take 
from geometry and 
topology and apply to 
mining and learning from 
complex networks?
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Non-backtracking cycles: length 
spectrum theory and graph mining 

applications

GLEE: Geometric Laplacian Eigenmap 
Embedding

Torres, L., Chan, K. S. and Eliassi-Rad, T. 
Journal of Complex Networks, Volume 8, 

Issue 2, April 2020, cnaa007.

Torres, L., Suárez-Serrato, P. and 
Eliassi-Rad, T. Appl Netw Sci (2019) 4: 41.



NBD: Non-Backtracking 
Distance
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Spoiler Alert!
Networks: the non-backtracking eigenvalues track important descriptors like 
degree distribution and triangles.

Machine Learning: non-backtracking eigenvalues are a great way of measuring 
distance.

Mathematics: the length spectrum of an unweighted graph characterizes its 2-core 
uniquely up to isomorphism.
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The Length Spectrum
1. Given a graph G = (V, E) and a node v, 
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The Length Spectrum
1. Given a graph G = (V, E) and a node v, consider the set of all closed walks that start and 

end at v.
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The Length Spectrum
2. Walks are equivalent if they are equal save for tree-like parts that don’t go through the 

basepoint...
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The Length Spectrum
2. … and retain the shortest walk in each subset.
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The Length Spectrum
2. This set is the fundamental group of G with basepoint v.
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The Length Spectrum
3. Walks are equivalent if they are equal save for tree-like parts that don’t go through the 

basepoint.
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The Length Spectrum
3. This is the set of non-backtracking cycles (NBCs) of G.
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The Length Spectrum
4.      is defined on               and assigns each walk the length of its “shaved” version.
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The Length Spectrum
4.      is defined on               and assigns each walk the length of its “shaved” version.
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The Length Spectrum

The Length Spectrum of a graph 
characterizes its 2-core uniquely up 

to isomorphism.

Constantine, D., and Lafont, J.-F. Marked Length Rigidity for One-Dimensional Spaces. Journal of 
Topology and Analysis, 2018. 20



Modifying the Length Spectrum

21



Modifying the Length Spectrum

Two assumptions Two problems

How to compute?

How to compare?
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Modifying the Length Spectrum

Two assumptions Two problems Two solutions

How to compute? Outputs instead of inputs

How to compare? Partition the set of outputs
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G H

Modifying the Length Spectrum

 
 

 

 

 
  

 
  

  

 

  
 

 

  

 

 
   

  

 
 Inputs

Outputs

24



Modifying the Length Spectrum
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Modifying the Length Spectrum
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Modifying the Length Spectrum
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Modifying the Length Spectrum
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Non-backtracking matrix
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Graph Distance
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Given two graphs     ,     and an integer   , write     ,     for 
the eigenvalues of their corresponding non-backtracking 

matrices,                     . Let     and      be the cumulative 
density function of the respective spectral densities. 

Define the distance between G and H by

Graph Distance

31



Properties: hubs

fewer hubs

Configuration model (n  =  10k,〈k〉=  10, γ  =  2.1)
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Properties: hubs are imaginary

fewer hubs

Configuration model (n  =  10k,〈k〉=  10, γ  =  2.1)
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Properties: triangles

more triangles

ER graph (n  =  10k, p  =  0.001)
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Properties: triangles

more triangles

ER graph (n  =  10k, p  =  0.001)
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Examples: clustering

1 dot = 1 eigenvalue 1 dot = 1 graph 36



Examples: clustering

37



Summary
The non-backtracking eigenvalues track descriptors like degree distribution and 
triangles and can find patterns and anomalies; THEREFORE they are a great way of 
measuring distance BECAUSE they contain similar information to the length 
spectrum, which characterizes the 2-core of an unweighted graph uniquely.

Supported by NSF CNS-1314603, NSF IIS-1741197, and DTRA HDTRA1-10-1-0120.
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Summary: geometry
● The derivation and algorithm are based on algebraic topology.

○ Intrinsic topology/geometry of each graph.

● The set of eigenvalues can be considered as a form of “graph embedding”.
○ Geometry of the set of all graphs, as represented by their eigenvalues.

Supported by NSF CNS-1314603, NSF IIS-1741197, and DTRA HDTRA1-10-1-0120.
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GLEE: Geometric Laplacian 
Eigenmap Embedding

Leo Torres, K. S. Chan and T. Eliassi-Rad. GLEE: Geometric Laplacian Eigenmap 
Embedding. J. of Comp. Net., Volume 8, Issue 2, April 2020, cnaa007.

Work supported by NSF CNS-1314603, NSF 
IIS-1741197, Army Research Laboratory 

Cooperative Agreement W911NF-13-2-0045.

Kevin S. Chan, ARL Tina Eliassi-Rad, NEU



Spoiler Alert!
Mathematics: there is a bijection between undirected graphs on n nodes and n-1 
dimensional simplices.

Networks: we can encode graph structure in geometric terms using the simplex 
geometry of the Laplacian.

Machine Learning: some embedding methods perform well only when clustering 
coefficient is high.
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GLEE: Geometric Laplacian Eigenmap Embedding

44



Singular Value Decomposition says that eliminating the rows and columns 
corresponding to the lowest singular values give a good approximation of L.

GLEE: Geometric Laplacian Eigenmap Embedding
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However, the last eigenvalue of L is always 0, which implies exact equality.

0

GLEE: Geometric Laplacian Eigenmap Embedding
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GLEE: Geometric Laplacian Eigenmap Embedding
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GLEE: Geometric Laplacian Eigenmap Embedding
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GLEE: Geometric Laplacian Eigenmap Embedding
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In a connected graph, L has rank n-1, and only one eigenvalue equal to 0. 
This implies that S has full rank, i.e., rank n-1.

GLEE: Geometric Laplacian Eigenmap Embedding
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This implies that the rows of S point 
to the vertices of an (n-1)-D simplex.

GLEE: Geometric Laplacian Eigenmap Embedding

K. Devriendt and P. Van Mieghem. The simplex geometry of graphs. 
The Journal of Complex Networks, 2019.
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GLEE: Geometric Laplacian Eigenmap Embedding

Given a graph G = (V, E), define the d-dimensional GLEE of a node i as the first d 
columns of the i-th row of S = P Λ1/2, and is denote it by si.
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Given the matrix S whose rows are si, how do we reconstruct the graph?

Graph Reconstruction
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Given the matrix S whose rows are si, how do we reconstruct the graph?

● Assume d = n-1. In this case, we simply have L = S ST.

Graph Reconstruction
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Given the matrix S whose rows are si, how do we reconstruct the graph?

● Assume d = n-1. In this case, we simply have L = S ST.
● If d < n, then S ST is the best rank-d approximation of L.

Graph Reconstruction

55



Graph Reconstruction: results
P
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k k

Same embedding dimension, similar network size, but 
different average clustering.
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Link Prediction: common neighbors
In many networks (e.g. social networks), the number of common neighbors is an 
excellent predictor of links because of triadic closure.
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Link Prediction: common neighbors
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Link Prediction: 3-paths
In other networks with low clustering (e.g. PPI networks), a better predictor is the 
number of paths of length 3.
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Link prediction: results
Average clustering coefficient

0.04 0.560.14
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Summary

Work supported by NSF CNS-1314603, NSF IIS-1741197, Army Research 
Laboratory Cooperative Agreement W911NF-13-2-0045.

There is a bijection between undirected graphs and simplices, THEREFORE we can 
encode graph structure in geometric terms using GLEE. IN CONTRAST, other 
methods usually make assumptions about the structure of the graph and therefore 
perform well only when those assumptions hold (e.g. high clustering coefficient).
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Summary: Geometry

Work supported by NSF CNS-1314603, NSF IIS-1741197, Army Research 
Laboratory Cooperative Agreement W911NF-13-2-0045.

● What else can we do with the geometry of embeddings?
● How can graphs be encoded geometrically?
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Perturbations
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Summary
The largest eigenvalue behaves in predictable ways. THEREFORE, monitoring it 
should provide a good defense against adversarial attack. FOR EXAMPLE, to 
immunize against certain recurrent state dynamics, first remove hubs, then break 
up the cliques. 
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Perturbations
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Node Immunization with 
Non-backtracking Eigenvalues

Torres, L., Chan, K.S., Tong, H., Eliassi-Rad, 
T. Preprint. arXiv:2002.12309 (2020).

Optimizing Graph Structure for 
Targeted Diffusion

Yu, S., Torres, L., Alfeld, S., Eliassi-Rad, T., 
and Vorobeychik, Y. Preprint. 

arXiv:2008.05589 (2020).



Geometry...?

Work supported by NSF CNS-1314603, NSF IIS-1741197, Army Research 
Laboratory Cooperative Agreement W911NF-13-2-0045.
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Gracias!

@ _leotrs
/ leotrswww.leotrs.com

leo@leotrs.com
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Currently on the job market as a postdoc or assistant 
professor at the intersection of network science, computer 
science, and mathematics. Please get in touch!


