

Northeastern University Network Science Institute

Geometric Laplacian Eigenmap Embedding

Leo Torres leo@leotrs.com

Abstract

- **Graph embedding** builds a low-dimensional representation of a graph.
- Popular in the literature is the **distance-minimization** assumption: if two nodes are close (in the graph), their embeddings must be close (in embedding space).
- We dispose of the distance-minimization assumption. Instead, our new method Geometric Laplacian Eigenmap Embedding (GLEE) builds an embedding with geometric properties by leveraging the so-called simplex geometry of graphs.
- Benefits of GLEE:
 - **Deterministic** and **interpretable**.
 - Great performance, especially in the case of **low clustering**.
 - Robust to noise: it can recover graph structure in the presence of a high percentage of noisy edges.

GLEE:

Kevin Chan kevin.s.chan.civ@mail.mil Tina Eliassi-Rad

Graph reconstruction: a classification problem with extreme class imbalance reconstruction L =**Problem:** find optimal value of θ . $L \approx$ $-1 \theta 0$ Graph **Three solutions:** *d* = 128 *d* = 32 d = 81e+1 Constant 1e-2 -.plus subsampling 2. Gaussian to deal with class 1e-2 Mixtures imbalance. 1e+1 Density 1e-2 3. Estimation -3 -10 2 -3 -10 -3 -10 Link Prediction: interpreting the geometry of GLEE **GLEE** (number of common neighbors, CN): $CN(i,j) = -\deg(i)C_{N(i)}^T \cdot s_j = -\deg(j)C_{N(j)}^T \cdot s_i$ $C_{N(j)}$ is the center of $C_{N(i)}$ is the center of mass of neighbors of jmass of neighbors of i**GLEE-L3** (number of paths of length 3, L3): $L3(i,j) = -\deg(i)\deg(j)C_{N(i)}^T \cdot C_{N(j)}^T + \sum_{k \in N(i) \cap N(j)} \|s_k\|^2$

tina@eliassi.org

Conclusions and Future Work

GLEE replaces distance-minimization with the direct encoding of graph structure in the geometry of the embedding space.

GLEE performs best when the graph has low clustering coefficient, and performance increases as the embedding dimension increases.

What other geometric properties of embeddings can we utilize?