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Abstract
● Measuring distances between two or more graphs have many 

applications in machine learning and data mining -- e.g., transfer 
learning, graph clustering, and anomaly detection.

● A nonbacktracking cycle (NBC) is a closed walk which does not 
retrace an edge immediately after traversing it.

● NBCs track graph features  such as the degrees and triangles.

● We propose a graph distance measure based on NBCs, backed by 
results from homotopy theory (a branch of  algebraic topology).

Future Work
1. Can algebraic-topological features (e.g. lengths of NBCs) be used to 

define a metric on the space of all graphs?

2. What other structural and dynamic graph measures are stored in 
NBCs and B?

3. What other learning and  mining tasks can be improved by the use of 
NBCs and B?

4. Which results from homotopy theory are computationally tractable?

Nonbacktracking Matrix B
● For a graph with m edges, the nonbacktracking matrix B is 2m × 2m.
● Each edge is represented by two rows and two columns, one per 

orientation.
● There is a 1 in the entry indexed by row u→v and column k→l when 

u ≠ l and v = k ; and a 0 otherwise.
● B is the transition matrix of a random walker with one-step memory that 

never traces an edge immediately after traversing it.
● B is a good alternative for computing graph distance because it:

I. tracks information about features such as degrees and 
triangles,

II. can be fine tuned to be more or less sensitive to such features,
III. is backed by results from homotopy theory.

● We give an efficient algorithm to compute the nonbacktracking matrix.

● To our knowledge, the connection between NBCs and homotopy 
theory hasn’t been fully realized.

Step 1. Compute the n × 2m matrices

                         ,                            ,
and their product                            .

Step 2. Observe that                             

while 
Thus, we can compute B entrywise

Here,      equals 1 when         .

Time complexity:

● O(m + n⟨k2⟩) in general
● O(m + n) in graphs with 

homogeneous degree 
distributions

● Between O(m + n)  and O(n2) 
in graphs with power-law 
degree distributions

B and the degree distribution
nnz(B) = n⟨k2⟩ - n⟨k⟩

B and triangles
tr(B³) = Σkαk(αk² - 3βk²)
for λk = αk + iβk.

Top 100 eigenvalues for real networks of diverse domains: social, communications, 
scientific citations, autonomous systems of the internet, and Web graphs.
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Homotopy No backtracks

➔ Forest? Bipartite? Regular?
➔ Girth? Number of spanning trees?
➔ Cospectrality
➔ Isometry

➔ Centrality
➔ Communities
➔ Embedding
➔ Degree Distribution
➔ Clustering Coefficient
➔ Graph Distance

Conjugacy

Graph Theory Network Science
 

 

Relationship to Homotopy Theory

A Measure of Graph Distance

Graph G1 G2

Eigenvalues

Features

Fine-tuned

● ER: Erdos-Renyi, KR: Kronecker Graph, BA: Barabasi-Albert, CM: Configuration 
Model, Ring: ring lattice, HG: Hyperbolic Graph.

● Left: distance between the mean feature vector of several random graph models. 
Models are ordered in increasing number of triangles from left to right. 

● Center: distance between mean modified feature vector. 
● Right: difference in previous two distances. 
● Observe that elements away from the diagonal have a larger difference in number 

of triangles, which are amplified accordingly. 

Top 100 eigenvalues for random 
graphs of different models: 
Barabasi-Albert (BA), KR 

(Kronecker Graphs), 
Configuration Model (CM), 

Hyperbolic Graphs (HG). All 
graphs have 11,000 nodes and 

approximately⟨k⟩ = 10.


