Graph Distance from a Topological View of Nonbacktracking Gycles

Leo Torres
leo@leotrs.com

Pablo Suárez Serrato and Tina Eliassi-Rad

Northeastern University

Network Science Institute

In This Talk

1. The Length Spectrum
2. Modifying the Length Spectrum
3. Graph Distance
4. Properties
5. Examples

The Length Spectrum

The Length Spectrum

The Length Spectrum of a graph characterizes it uniquely* up to isomorphism. ${ }^{1}$

The Length Spectrum

1. Given a graph $G=(V, E)$ and a node v,

The Length Spectrum

1. Given a graph $G=(V, E)$ and a node v, consider the set of all closed walks that start and end at v.

The Length Spectrum

2. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint...

The Length Spectrum

The Length Spectrum

2. This set is the fundamental group of G with basepoint v.

The Length Spectrum

3. Walks are equivalent if they are equal save for tree-like parts that don't go through the

The Length Spectrum

3. This is the set of nonbacktracking cycles (NBCs) of G.

NBCs

The Length Spectrum

4. \mathcal{L} is defined on $\pi_{1}(G, v)$ and assigns each walk the length of its "shaved" version.

NBCs

The Length Spectrum

The Length Spectrum of a graph characterizes it uniquely* up to isomorphism. ${ }^{1}$

Modifying the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

Modifying the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

Two assumptions	Two problems	Two solutions
$G \rightarrow \mathcal{L}_{G}$	How to compute?	Image instead of domain
$d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)$	How to compare?	Partition the image

Modifying the Length Spectrum

Partition the image

	G	H
Domain		- -q a र. $=01$ \&े कह रे रे
Image		

Modifying the Length Spectrum

Partition the image

Modifying the Length Spectrum

Partition the image

Modifying the Length Spectrum

Partition the image

	G	H
Domain		
Image		

Modifying the Length Spectrum

Partition the image

Craph Distance

How to compare these two histograms?

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the nonbacktracking matrix B.

Detour: nonbacktracking matrix B

$$
\begin{aligned}
& G=(V, E) \\
& |E|=m
\end{aligned}
$$

B

Detour: nonbacktracking matrix B

Craph Distance

How to compare these two histograms?

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the nonbacktracking matrix \mathbf{B}.

Craph Distance

How to compare these two histograms?

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the nonbacktracking matrix \mathbf{B}.

Craph Distance

How to compare these two histograms?

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the nonbacktracking matrix \mathbf{B}.

Craph Distance

How to compare these two histograms?

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the nonbacktracking matrix \mathbf{B}.
- Thus, the histograms can be generated using only the eigenvalues of B.

H

Fraph Distance

Given two graphs $\boldsymbol{G}, \boldsymbol{H}$ and an integer \boldsymbol{r}, write λ_{k}, μ_{k} for the eigenvalues of their corresponding nonbacktracking matrices, $k=1,2, \ldots, r$, such that

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{r}\right| \quad\left|\mu_{1}\right| \geq\left|\mu_{2}\right| \geq \ldots \geq\left|\mu_{r}\right|
$$

Define their distance by

$$
d(G, H)=\sqrt{\sum_{k=1}^{r}\left|\lambda_{k}-\mu_{k}\right|^{2}}
$$

Craph Distance

[A1] Identity: $d(G, G)=0$
[A2] Symmetry: $d(G, H)=d(H, G)$
[A3] Triangle Inequality: $d(G, H) \leq d(G, F)+d(F, H)$
[(7. Id. of indiscernibles: $d(G, H)=0 \Longrightarrow G=H$

$$
\begin{aligned}
& \text { [A5] Divergence }{ }^{2}: d\left(K_{n}, \bar{K}_{n}\right) \rightarrow \infty \text { as } n \rightarrow \infty \\
& d(G, H)=\sqrt{\sum_{k=1}^{r}\left|\lambda_{k}-\mu_{k}\right|^{2}}
\end{aligned}
$$

In This Talk

1. The Length Spectrum
2. Modifying the Length Spectrum
3. Graph Distance
4. Properties
5. Examples

Properties: hubs

$$
\text { Configuration model }(n=10 k,\langle k\rangle=10, \gamma=2.1)
$$

Properties: hubs

Configuration model ($n=10 k,\langle k\rangle=10, \gamma=2.1$)

fewer hubs

Properties: triangles

ER graph (n = 10k, p = 0.001)

Properties: triangles

Examples: clustering

1 dot = 1 eigenvalue

Examples: clustering

Rpamples: Enron emails

Distance to Sun, July 15th, 2001

- (1) Skilling becomes CEO
- (2) Analyst conference call to boost stock
- (3) Schwarzenegger, Lay meeting
- (4) California energy crisis ends
- (5) Enron shares down 20%
- (6) Lay resigns from the board
- (7) Arthur Andersen indicted

Thank Youl

1. The length spectrum characterizes a graph uniquely*.
2. The eigenvalues of \mathbf{B} account for the image of \mathbf{L}.
3. We define a pseudometric, which can be interpreted in terms of triangles, degrees.
4. It can cluster random graphs well and detect anomalies.

leotrs.com/science.html

