Graph Distance from a Topological View of Nonbacktracking Cycles

Leo Torres leo@leotrs.com

Pablo Suárez Serrato and Tina Eliassi-Rad

Northeastern University Network Science Institute

In This Talk

- 1. The Length Spectrum
- 2. Modifying the Length Spectrum
- 3. Graph Distance
- 4. Properties
- 5. Examples

The Length Spectrum of a graph characterizes it uniquely^{*} up to isomorphism.¹

[1] Constantine, David, and Jean-François Lafont. **"Marked Length Rigidity for One-Dimensional Spaces."** Journal of Topology and Analysis, 2018. doi:10.1142/s1793525319500250.

1. Given a graph G = (V, E) and a node v,

1. Given a graph G = (V, E) and a node v, consider the set of all closed walks that start and end at v.

 \sim \sim \sim \sim \sim

2. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint...

2. ... and retain the shortest walk in each subset.

2. This set is the fundamental group of G with basepoint v.

3. Walks are equivalent if they are equal save for tree-like parts that don't go through the basepoint.

3. This is the set of nonbacktracking cycles (NBCs) of G.

11

4. \mathcal{L} is defined on $\pi_1(G, v)$ and assigns each walk the length of its "shaved" version.

NBC

12

The Length Spectrum of a graph characterizes it uniquely^{*} up to isomorphism.¹

[1] Constantine, David, and Jean-François Lafont. **"Marked Length Rigidity for One-Dimensional Spaces."** Journal of Topology and Analysis, 2018. doi:10.1142/s1793525319500250.

 $d(G,H) = d(\mathcal{L}_G,\mathcal{L}_H)$

 $d(G,H)=d(\mathcal{L}_G,\mathcal{L}_H)$

Two assumptions	Two problems	Two solutions
$G o \mathcal{L}_G$	How to compute?	Image instead of domain
$d(\mathcal{L}_G,\mathcal{L}_H)$	How to compare?	Partition the image

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the *nonbacktracking matrix* **B**.

Detour: nonbacktracking matrix B

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the *nonbacktracking matrix* **B**.

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the *nonbacktracking matrix* **B**.

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the *nonbacktracking matrix* **B**.

- Observe that the height of each bar is the number of NBCs of a certain length.
- We can compute this using the *nonbacktracking matrix* **B**.
- Thus, the histograms can be generated using only the eigenvalues of **B**.

Given two graphs G, H and an integer r, write λ_k , μ_k for the eigenvalues of their corresponding nonbacktracking matrices, k = 1, 2, ..., r, such that

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_r| \qquad \quad |\mu_1| \geq |\mu_2| \geq \ldots \geq |\mu_r|$$

Define their distance by

$$d(G,H) = \sqrt{\sum_{k=1}^r \left|\lambda_k - \mu_k
ight|^2}$$

[A1] Identity: d(G,G) = 0[A2] Symmetry: d(G, H) = d(H, G)[A3] Triangle Inequality: $d(G,H) \leq d(G,F) + d(F,H)$ $[\mathcal{M}]$ Id. of indiscernibles: $d(G,H)=0 \Longrightarrow G=H$ [A5] Divergence²: $d(K_n, ar{K}_n) o \infty$ as $n o \infty$ $d(G,H) = \sqrt{\sum_{k=1}^r \left|\lambda_k - \mu_k
ight|^2}$

[2] Koutra, Danai, et al. **"DeltaCon: A Principled Massive-Graph Similarity Function."** Proceedings of the 2013 SIAM International Conference on Data Mining, 2013, doi:10.1137/1.9781611972832.18.

In This Talk

- 1. The Length Spectrum
- 2. Modifying the Length Spectrum
- 3. Graph Distance
- 4. Properties
- 5. Examples

Properties: hubs

Configuration model (n = 10k, $\langle k \rangle = 10$, $\gamma = 2.1$)

Properties: hubs

Configuration model (n = 10k, $\langle k \rangle = 10$, $\gamma = 2.1$)

Properties: triangles

ER graph (n = 10k, p = 0.001)

Properties: triangles

ER graph (n = 10k, p = 0.001)

Examples: clustering

Examples: clustering

Examples: Enron emails

Distance to previous week

Enron who-emails-whom network weekly graph distance

Thank You!

- 1. The length spectrum characterizes a graph uniquely*.
- 2. The eigenvalues of **B** account for the image of **L**.
- 3. We define a pseudometric, which can be interpreted in terms of triangles, degrees.
- 4. It can cluster random graphs well and detect anomalies.

Supported by NSF CNS-1314603, NSF IIS-1741197, and DTRA HDTRA1-10-1-0120.

