A Topologically-Inspired Graph Distance

Leo Torres Pablo Suárez Serrato and Tina Eliassi-Rad

Definitions

- **Backtrack:** traversing an edge twice in succession.
- Non-backtracking cycle: a closed walk with no backtracks.
- Non-backtracking matrix (B): the transition matrix of a random walker that does not do backtracks.
- **Length Spectrum (L):** a function that assigns a cycle the length of its "shaved" version.

Using the Length Spectrum

 $d(G,H) = d(\mathcal{L}_G,\mathcal{L}_H)$

Two assumptions	Two problems
$G o \mathcal{L}_G$	How to compute?
$d(\mathcal{L}_G,\mathcal{L}_H)$	How to compare?

Using the Length Spectrum

Using the Length Spectrum

Graph Distance

Given two graphs G, H and an integer r; write λ_k , μ_k for the eigenvalues of their corresponding nonbacktracking matrices, k = 1, 2, ..., r, such that

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_r| \qquad \quad |\mu_1| \geq |\mu_2| \geq \ldots \geq |\mu_r|$$

Define their distance by

$$d(G,H) = \sqrt{\sum_{k=1}^r \left|\lambda_k - \mu_k
ight|^2}$$

*This defines a pseudo-metric on the set of graphs.

Examples: clustering

leotrs.com/science.html