## A Topologically-Inspired Graph Distance <br> Leo Torres <br> Pablo Suárez Serrato and Tina Eliassi-Rad



Northeastern University
Network Science Institute

## Definitions

- Backtrack: traversing an edge twice in succession.

- Non-backtracking cycle: a closed walk with no backtracks.

- Non-backtracking matrix (B): the transition matrix of a random walker that does not do backtracks.

- Length Spectrum $(L)$ : a function that assigns a cycle the length of its "shaved" version.

$$
L\left(\alpha_{0}, \mathscr{L}_{0}\right)=3
$$

## Using the Length Spectrum

$$
d(G, H)=d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)
$$

| Two assumptions | Two problems |
| :---: | :---: |
| $G \rightarrow \mathcal{L}_{G}$ | How to compute? |
| $d\left(\mathcal{L}_{G}, \mathcal{L}_{H}\right)$ | How to compare? |

## Using the Length Spectrum

| $G$ | H |
| :---: | :---: |
|  |  |
|  |  |

## Using the Length Spectrum



## Fraph Distance

Given two graphs $\boldsymbol{G}, \boldsymbol{H}$ and an integer $\boldsymbol{r}$, write $\lambda_{k}, \mu_{k}$ for the eigenvalues of their corresponding nonbacktracking matrices, $k=1,2, \ldots, r$, such that

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{r}\right| \quad\left|\mu_{1}\right| \geq\left|\mu_{2}\right| \geq \ldots \geq\left|\mu_{r}\right|
$$

Define their distance by

$$
d(G, H)=\sqrt{\sum_{k=1}^{r}\left|\lambda_{k}-\mu_{k}\right|^{2}}
$$

*This defines a pseudo-metric on the set of graphs.

## Examples: clustering




1 dot = 1 eigenvalue
1 dot $=1$ graph

## Thank Youl

$$
L\left(\alpha_{0} \mathscr{L}_{0}\right)=3
$$




## leotrs.com/science.html

