## The largest non-backtracking eigenvalue under node removal

Leo























$$G = (V, E)$$
  
 $|E| = m$ 

B





$$G = (V, E)$$
 $|E| = m$ 

B

# The largest non-backtracking eigenvalue under node removal





 $B, \lambda_1$ 

 $B^c,\lambda_1^c$ 



- 1. Problem definition
- 2. Motivation
- 3. Block matrix
- 4. Finding a root
- 5. Application: immunization
- 6. Application: detecting dense subgraphs



**Mathematics** 

#### **Mathematics**

- 1. Non-backtracking matrix is not symmetric and not normal.
- 2. No eigenvalue interlacing.

#### **Mathematics**

- 1. Non-backtracking matrix is not symmetric and not normal.
- 2. No eigenvalue interlacing.

- 1. Growth, percolation, dynamics of.
- 2. The spread of certain epidemics is described by  $\lambda_1$ ,

#### **Mathematics**

- 1. Non-backtracking matrix is not symmetric and not normal.
- 2. No eigenvalue interlacing.

- 1. Growth, percolation, dynamics of.
- 2. The spread of certain epidemics is described by  $\lambda_1$ , (Shrestha, Scarpino, Moore, 2015).

#### **Mathematics**

- 1. Non-backtracking matrix is not symmetric and not normal.
- 2. No eigenvalue interlacing.

#### **Network Science**

- 1. Growth, percolation, dynamics of.
- 2. The spread of certain epidemics is described by  $\lambda_1$ , (Shrestha, Scarpino, Moore, 2015).

Application: which node to remove to decrease  $\lambda_1$  the most?





















Score card  $F^2 = 0$ 





Score card  $F^2 = 0$ 





Score card  $F^2 = 0$ 

#### **Block Matrix**







DE = 0













$$\det\left(B^c-tI
ight)=0$$



Score card

 $F^2 = 0 \ DE = 0 \ X = DFE!!!$ 

$$\det\left(B^c-tI
ight)=0$$

$$\det\left(B^{c}-tI
ight)=\det\left(F-tI
ight)\det\left(B-tI-D(F-tI)^{-1}E
ight)$$



Score card

 $F^2 = 0 \ DE = 0 \ X = DFE!!!$ 

$$\det\left(B^{c}-tI
ight)=0$$

$$\det\left(B^c-tI
ight)=\det\left(F-tI
ight)\det\left(B-tI-D(F-tI)^{-1}E
ight) 
onumber \ =t^{2d}\det\left(B-tI+rac{X}{t^2}
ight)$$



$$\det\left(B^c - tI\right) = 0$$

$$\det \left(B^c - tI\right) = \det \left(F - tI\right) \det \left(B - tI - D(F - tI)^{-1}E
ight)$$
  
 $= t^{2d} \det \left(B - tI + rac{X}{t^2}
ight)$   
 $= t^{2d} \det \left(B - tI
ight) \det \left(I + rac{YX}{t^2}
ight)$   $Y = (B - tI)^{-1}$ 



$$\det\left(B^c-tI
ight)=0$$

$$\det \left(B^c - tI\right) = t^{2d} \det \left(B - tI\right) \det \left(I + \frac{YX}{t^2}\right) \qquad Y = (B - tI)^{-1}$$



Solve:

$$\det\left(I+rac{YX}{t^2}
ight)=0$$

 $egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$ 



Solve:

$$\det\left(I+rac{YX}{t^2}
ight)=0$$

 $egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$ 

 $\det\left(I + \frac{YX}{t^2}\right) = 1 + \frac{1}{t^2}Tr\left(YX\right) + \dots$ 



Solve:

$$\det\left(I+rac{YX}{t^2}
ight)=0$$

 $egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$ 

 $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}\sum_irac{v_i^TXu_i}{t-\lambda_i}+\dots$ 



Solve:

$$\det\left(I+rac{YX}{t^2}
ight)=0$$

 $egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$ 



Solve:

$$\det\left(I+rac{YX}{t^2}
ight)=0$$

X = DFE $Y = (B - tI)^{-1}$ 

 $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}rac{v_1^TXu_1}{t-\lambda_1} \iff t^2(t-\lambda_1)+v_1^TXu_1=0$ 



Solve:

$$t^2(t-\lambda_1)+v_1^TXu_1=0$$

 $X = DFE \ \lambda_1, u_1, v_1$ 

- 1. Third degree polynomial: closed form solution
- 2. Solution increasing in  $v_1^T X u_1$

### **Really good approximation**



### **Studying the constant**



### **Studying the constant: planted clique**



### **Studying the constant: planted clique**



#### **Application: clique detection**



#### **Gracias!**



- 1. Immunization: remove hubs, break up cliques
- 2. Towards non-backtracking eigenvalue interlacing
- 3. Bounds on graph distance (NBD)