## Unitary non-backtracking eigenvalues

## Leo Torres <br> October 2021

## Leo Torres

PhD in Network Science
Network Science Institute, Northeastern University leo@leotrs.com

## math

CS

## Non-backtracking Matrix

## Non-backtracking Matrix



$$
G=(V, E)
$$

## Non-backtracking Matrix



## Non-backtracking Matrix

- community detection
- Krzakala, et al. PNAS 110.52 (2013): 20935-20940.
- Bordenave, et al. FOCS (2015).
- centrality
- Martin, et al. Phys. Rev. E 90.5 (2014): 052808.
- Morone \& Makse. Nature 524.7563 (2015): 65-68.
- Arrigo, et al. J. of Sci. Comp. 80.3 (2019): 1419-1437.
- dynamics (SIR, SIS)
- Karrer, et al. Phys. Rev. Lett. 113.20 (2014): 208702.
- Hamilton, \& Pryadko. Phys. Rev. Lett. 113.20 (2014): 208701.
- Shrestha, et al. Phys. Rev. E 92.2 (2015): 022821.
- Castellano, \& Pastor-Satorras. Phys. Rev. E 98.5 (2018): 052313.
- Masuda, et al. J. of App. Math. 85.2 (2020): 214-230.



## B

## Anecdotal observation:

## most graphs I've seen have a simple spectrum...

## Anecdotal observation:

 most graphs l've seen have a simple spectrum...EXCEPT for the unitary eigenvalues

## Anecdotal observation:

 most graphs l've seen have a simple spectrum...EXCEPT for the unitary eigenvalues

## WHY?

## Questions

- What's different about the unitary eigenvalues?
- Can we compute their multiplicities?
- Is the geometric mult. equal to the algebraic mult.?
- How does this affect the diagonalizability of the matrix?


## Questions

- What's different about the unitary eigenvalues?
related to certain subgraphs
- Can we compute their multiplicities?
- Is the geometric mult. equal to the algebraic mult.?
- How does this affect the diagonalizability of the matrix?

```
    yes!
```

maybe...
it (maybe) doesn't!

## Setting

Let $G$ be a graph with non-backtracking matrix $B$. Let $B \mathbf{v}=\lambda \mathbf{v}$ and $|\lambda|=1$.

## Tasks:

- study $\mathbf{v}, \lambda$
- compute the number of such $\mathbf{v}$ that are L.I.


## Setting

Let $G$ be a graph with non-backtracking matrix $B$. Let $B \mathbf{v}=\lambda \mathbf{v}$ and $|\lambda|=1$.

## Tasks:

- study $\mathbf{v}, \lambda$
- compute the number of such $\mathbf{v}$ that are L.I.


## Recall:

- $B$ has one row/column for each oriented edge (size $2 m \times 2 m$ )
- $\mathbf{v}$ is a function of the oriented edges


## Some initial facts

## Some initial facts

- As a matrix:

$$
B_{k \rightarrow l, i \rightarrow j}=\delta_{j k}\left(1-\delta_{i l}\right)
$$

## Some initial facts

- As a matrix:

$$
\begin{gathered}
B_{k \rightarrow l, i \rightarrow j}=\delta_{j k}\left(1-\delta_{i l}\right) \\
i \quad j=k \quad l
\end{gathered}
$$

## Some initial facts

- As a matrix:

$$
B_{k \rightarrow l, i \rightarrow j}=\delta_{j k}\left(1-\delta_{i l}\right)
$$

$$
i \quad j=k \quad l
$$

$$
i=l \quad j=k
$$

## Some initial facts

- As an operator:

$$
(B \mathbf{v})_{k \rightarrow l}=\sum_{i-k} \mathbf{v}_{i \rightarrow k}-\mathbf{v}_{l \rightarrow k}
$$

## Some initial facts

- As an operator:

$$
(B \mathbf{v})_{k \rightarrow l}=\sum_{i-k} \mathbf{v}_{i \rightarrow k}-\mathbf{v}_{l \rightarrow k}
$$

## Some initial facts

- As an operator:

$$
(B \mathbf{v})_{k \rightarrow l}=\sum_{i-k} \mathbf{v}_{i \rightarrow k}-\mathbf{v}_{l \rightarrow k}
$$



## Some initial facts

- As an operator:
"v into k"
$(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k^{2}}-\mathbf{v}_{l \rightarrow k}$



## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:


## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:



## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:



## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:



## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:



## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:

> What's more: it can be shown that nodes of degree one do not influence the non-zero eigenvalues.


$$
B \chi_{k \rightarrow l}=0
$$

## Some initial facts

- Take the characteristic function of a directed edge pointing to a node of degree one:

What's more: it can be shown that nodes of degree one do not influence the non-zero eigenvalues.


From now on, assume the graph has minimum degree 2.

$$
B \chi_{k \rightarrow l}=0
$$

## Some initial facts

- If $\mathbf{v}$ is an eigenvector:

$$
(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k}
$$

## Some initial facts

- If $\mathbf{v}$ is an eigenvector:

$$
\lambda \mathbf{v}_{k \rightarrow l}=(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k}
$$

## Some initial facts

- If $\mathbf{v}$ is an eigenvector:

$$
\begin{aligned}
\lambda \mathbf{v}_{k \rightarrow l}=(B \mathbf{v})_{k \rightarrow l} & =\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k} \\
\lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k} & =\overrightarrow{\mathbf{v}}^{k}
\end{aligned}
$$

## Some initial facts

- What if $\lambda$ is unitary?
$|\lambda|=1 \Longleftrightarrow B B^{*} \mathbf{v}=B^{*} B \mathbf{v}=\mathbf{v}$


## Some initial facts

- What if $\lambda$ is unitary?

$$
|\lambda|=1 \Longleftrightarrow B B^{*} \mathbf{v}=B^{*} B \mathbf{v}=\mathbf{v}
$$

- By direct computation:

$$
\left(B^{*} B \mathbf{v}\right)_{k \rightarrow l}=\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}+\mathbf{v}_{k \rightarrow l}
$$

## Some initial facts

- What if $\lambda$ is unitary?

$$
|\lambda|=1 \Longleftrightarrow B B^{*} \mathbf{v}=B^{*} B \mathbf{v}=\mathbf{v}
$$

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$

## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$

## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$

## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$



## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$



## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$



## Some initial facts

- By direct computation:

$$
|\lambda|=1 \Longleftrightarrow\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$



## Some initial facts: recap

For any vector:
$(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k}$

## Some initial facts: recap

- For any vector:

$$
(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k}
$$

- For any eigenvector:

$$
\lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=\overrightarrow{\mathbf{v}}^{k}
$$

## Some initial facts: recap

- For any vector:

$$
(B \mathbf{v})_{k \rightarrow l}=\overrightarrow{\mathbf{v}}^{k}-\mathbf{v}_{l \rightarrow k}
$$

- For any eigenvector:
$\lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=\overrightarrow{\mathbf{v}}^{k}$
- For any e'vector of unitary e'value:

$$
\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l
$$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.

$\lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0$
$\mathbf{v}_{k \rightarrow l}+\lambda \mathbf{v}_{l \rightarrow k}=0$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.
Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


$$
\begin{aligned}
& \lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 \\
& \mathbf{v}_{k \rightarrow l}+\lambda \mathbf{v}_{l \rightarrow k}=0
\end{aligned} \Longrightarrow\left(\lambda^{2}-1\right) \mathbf{v}_{k \rightarrow l}=0
$$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.
Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$.


$$
\begin{gathered}
\lambda \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 \\
\mathbf{v}_{k \rightarrow l}+\lambda \mathbf{v}_{l \rightarrow k}=0
\end{gathered} \Longrightarrow\left(\lambda^{2}-1\right) \mathbf{v}_{k \rightarrow l}=0
$$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.
$\overrightarrow{\mathbf{v}}^{k}=0$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.

$$
\begin{gathered}
\lambda \mathbf{v}_{k \rightarrow x}+\mathbf{v}_{x \rightarrow k}=0 \\
\mathbf{v}_{k \rightarrow x}=\lambda \mathbf{v}_{x \rightarrow l} \\
\hdashline \mathbf{v}_{l \rightarrow x}=\lambda \mathbf{v}_{x \rightarrow k} \\
\lambda \mathbf{v}_{l \rightarrow x}+\mathbf{v}_{x \rightarrow l}=0
\end{gathered}
$$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$.

$$
\left(\lambda^{4}-1\right) \mathbf{v}_{k \rightarrow x}=0
$$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$. Then, $\lambda^{4}=1$.

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$. Then, $\lambda^{4}=1$.
3. Suppose $k-x-y-l \ldots$


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

1. Suppose $k-l$ with $d_{k}, d_{l} \geq 3$ and $\mathbf{v}_{k \rightarrow l} \neq 0$. Then, $\lambda^{2}=1$.
2. Suppose $k-x-l$ with $d_{k}, d_{l} \geq 3, d_{x}=2$ and $\mathbf{v}_{k \rightarrow x} \neq 0$. Then, $\lambda^{4}=1$.
3. Suppose $k-x-y-l \ldots$ then, $\lambda^{6}=1$.


## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:
4. In general, we have $\lambda^{2 p}=1$, where $p$ is the length of one of these chains of nodes of degree 2 .

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$. Sketch:
4. In general, we have $\lambda^{2 p}=1$, where $p$ is the length of one of these chains of nodes of degree 2 , which must exist...

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

4. In general, we have $\lambda^{2 p}=1$, where $p$ is the length of one of these chains of nodes of degree 2 , which must exist...
5. UNLESS the graph is a circle graph $C_{k}$

## Unitary e'values are roots of unity

Theorem: if $B \mathbf{v}=\lambda \mathbf{v}$ with $|\lambda|=1$, then $\exists r$ such that $\lambda^{r}=1$.

## Sketch:

4. In general, we have $\lambda^{2 p}=1$, where $p$ is the length of one of these chains of nodes of degree 2 , which must exist...
5. UNLESS the graph is a circle graph $C_{k} \Longrightarrow \lambda^{k}=1$.

## More assumptions...

## From now on:

1. finite
2. simple
3. undirected
4. unweighted
5. connected
6. minimum degree 2
7. not a circle graph (i.e. at least one node w degree $3+$ )

## Support of a unitary e'vector

## $p_{1}$



## Support of a unitary e'vector


$p_{2}$

## Support of a unitary e'vector


$p_{2}$


## Support of a unitary e'vector


$\lambda^{2}=1$

## Support of a unitary e'vector


$p_{2}$
$\lambda^{2}=1$
$p_{1}=k_{1} p, \quad p_{2}=k_{2} p$

## Support of a unitary e'vector


$p_{2}$
$\lambda^{2}-1 \quad p_{1}=k_{1} p, \quad p_{2}=k_{2} p$

## Support of a unitary e'vector

Theorem: Suppose $\lambda^{2 p}=1, p \neq 1$, then its support must be made up of "chains" whose length is a multiple of $p$.

## Support of a unitary e'vector

Theorem: Suppose $\lambda^{2 p}=1, p \neq 1$, then its support must be made up of "chains" whose length is a multiple of $p$.


## Graph subdivisions

Definition: For a graph $G$, its $p$-th subdivision is the graph formed by replacing each edge by a chain of length $p$.


## Support of a unitary e'vector

Theorem: Suppose $\lambda^{2 p}=1, p \neq 1$, then its support must be the $p$-th subdivision of some graph.


## Support of a unitary e'vector

Theorem: Suppose $\lambda^{2 p}=1, p \neq 1$, then its support must be the $p$-th subdivision of some graph.

The study of e'values that are complex roots of unity is reduced to the study of graph subdivisions.

## Support of a unitary e'vector

Theorem: Suppose $\lambda^{2 p}=1, p \neq 1$, then its support must be the $p$-th subdivision of some graph.

The study of e'values that are complex roots of unity is reduced to the study of graph subdivisions.

This is what's special about unitary e'values.

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

1. Define the zeta function

$$
Z_{G}(t)=\prod_{c \in G}\left(1-t^{|c|}\right)^{-1}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

1. Define the zeta function

$$
Z_{G}(t)=\prod_{c \in G}\left(1-t^{|c|}\right)^{-1}
$$

The Ihara determinant formula:

$$
Z_{G}(t)=1 / \operatorname{det}\left(I-t B_{G}\right)
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

$$
Z_{H}(t)=\prod_{c \in H}\left(1-t^{|c|}\right)^{-1}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

$$
Z_{H}(t)=\prod_{c \in H}\left(1-t^{|c|}\right)^{-1}=\prod_{c \in G}\left(1-t^{p|c|}\right)^{-1}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

$$
Z_{H}(t)=\prod_{c \in H}\left(1-t^{|c|}\right)^{-1}=\prod_{c \in G}\left(1-t^{p|c|}\right)^{-1}
$$

$1 / \operatorname{det}\left(I-t B_{H}\right)=$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

$$
Z_{H}(t)=\prod_{c \in H}\left(1-t^{|c|}\right)^{-1}=\prod_{c \in G}\left(1-t^{p|c|}\right)^{-1}
$$

$1 / \operatorname{det}\left(I-t B_{H}\right)=1 / \operatorname{det}\left(I-t^{p} B_{G}\right)$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

$$
Z_{H}(t)=\prod_{c \in H}\left(1-t^{|c|}\right)^{-1}=\prod_{c \in G}\left(1-t^{p|c|}\right)^{-1}
$$

$1 / \operatorname{det}\left(I-t B_{H}\right)=1 / \operatorname{det}\left(I-t^{p} B_{G}\right)$
$\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.


## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2:

$$
B_{G} \mathbf{v}=\lambda^{p} \mathbf{v}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2:

$$
B_{G} \mathbf{v}=\lambda^{p} \mathbf{v} \quad \Longrightarrow \quad \begin{gathered}
B_{H} \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1} \\
B_{H} \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2} \\
\ldots \\
B_{H} \mathbf{v}_{p}=\lambda_{p} \mathbf{v}_{p}
\end{gathered}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).


## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.


## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.

$$
\begin{cases}\overrightarrow{\mathbf{v}}^{l}=0 & \text { for each node } l \\ \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 & \text { for each edge } k-l\end{cases}
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.

$$
\begin{cases}\overrightarrow{\mathbf{v}}^{l}=0 & \text { for each node } l, \\ \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 & \text { for each edge } k-l .\end{cases}
$$



## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.

$$
\begin{cases}\overrightarrow{\mathbf{v}}^{l}=0 & \text { for each node } l, \\ \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 & \text { for each edge } k-l .\end{cases}
$$



## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.

$$
\begin{cases}\overrightarrow{\mathbf{v}}^{l}=0 & \text { for each node } l, \\ \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 & \text { for each edge } k-l .\end{cases}
$$



## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)$.

$$
\begin{cases}\overrightarrow{\mathbf{v}}^{l}=0 & \text { for each node } l \\ \mathbf{v}_{k \rightarrow l}+\mathbf{v}_{l \rightarrow k}=0 & \text { for each edge } k-l\end{cases}
$$

$$
|E|-\frac{1}{1}|V|+1
$$

## E'vectors of subdivisions

Theorem: Let $H$ be the $p$-th subdivision of some graph $G$ s.t. $G$ is not the subdivision of any other graph. Suppose $\lambda$ is a $p$-th root of unity. Then $G M(\lambda)=|E|-|V|+1$.

## Sketch:

- Step 1: $\lambda^{p}$ is an e'value of $G \Longleftrightarrow \lambda$ is an e'value of $H$.
- Step 2: build e'vectors of $H$ using e'vectors of $G$ (and vice-versa).
- Step 3: $G M_{H}(\lambda)=G M_{G}(1)=|E|-|V|+1$.


## Recap

1. The support of unitary e'vector must be a graph subdivision.
2. The support can be detached (studied in isolation).
3. All e'values and e'vectors of subdivisions are accounted for.

## Recap

1. The support of unitary e'vector must be a graph subdivision.
2. The support can be detached (studied in isolation).
3. All e'values and e'vectors of subdivisions are accounted for.
4. What are all the possible ways to glue a subdivision?

## Gluing a subdivision

1. The support of unitary e'vector must be a graph subdivision.
2. The support can be detached (studied in isolation).
3. All e'values and e'vectors of subdivisions are accounted for.
4. What are all the possible ways to glue a subdivision?

$H$


## Some notation

Definition: True nodes and subdivision nodes.


## Gluing a subdivision

Identify some of the true nodes of $S_{p}$ with a node in $G$.


G

$$
S_{p}
$$

## Gluing a subdivision

Identify some of the true nodes of $S_{p}$ with a node in $G$.


G
$S_{p}$
H

## Gluing a subdivision

Identify some of the true nodes of $S_{p}$ with a node in $G$.
Lemma: Take an eigenvector of $S_{p}$. Pad it with zeros. Then that vector is "non-leaky" in $H$, i.e. $\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l$.


G $S_{p}$

H

## Some notation

Definition: if the subdivision is even, we also have middle nodes.


## Gluing a subdivision

Identify some of the true or middle nodes nodes of $S_{p}$ with a node in $G$.

Lemma: Take an eigenvector of $S_{p}$. Pad it with zeros. Then that vector is "non-leaky" in $H$, i.e. $\left(d_{l}-2\right) \overrightarrow{\mathbf{v}}^{l}=0, \forall l$.


G
$S_{p}$


H

## Examples



## Examples



## Examples



## Algebraic multiplicity

## Algebraic multiplicity



G
$S_{p}$
H

## Algebraic multiplicity

Theorem: Form $H$ by gluing a circle graph of length k to some graph $G$. Then the characteristic polynomial of $H$ satisfies:

## Algebraic multiplicity

Theorem: Form $H$ by gluing a circle graph of length k to some graph $G$. Then the characteristic polynomial of $H$ satisfies:

$$
\operatorname{det}\left(B_{H}-t I\right)=\left(t^{2 k}-1\right) \operatorname{det}\left(B_{G}-t I\right)-2\left(t^{k}-1\right) \operatorname{det}\left(B_{G}-C_{h}-t I\right)
$$

## Algebraic multiplicity

Theorem: Form $H$ by gluing a circle graph of length k to some graph $G$. Then the characteristic polynomial of $H$ satisfies:

$$
\operatorname{det}\left(B_{H}-t I\right)=\left(t^{2 k}-1\right) \operatorname{det}\left(B_{G}-t I\right)-2\left(t^{k}-1\right) \operatorname{det}\left(B_{G}-C_{h}-t I\right)
$$



$$
\left(C_{h}\right)_{k \rightarrow l, i \rightarrow j}=\delta_{j h} \delta_{k h}
$$



PB

