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e What’s different about the unitary eigenvalues? re'a:jg;:’a:irstai“
e Can we compute their multiplicities? yes!

e Isthe geometric mult. equal to the algebraic mult.? maybe...

e How does this affect the diagonalizability of the matrix? it (maybe) doesn’t!
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Setting

Let GG be a graph with non-backtracking matrix B. Let Bv = Av
and |A| = 1.

Tasks:
e study v, \
e compute the number of such vthat are L.I.

Recall:
e B hasonerow/column for each oriented edge (size 2m x 2m)

e v isafunction of the oriented edges
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Some initial facts

e Take the characteristic function of a directed edge
pointing to a node of degree one:

What's more: it can be X k—sl
shown that nodes of degree -
one do not influence the
non-zero eigenvalues.

From now on, assume the BXk—)l — O

graph has minimum degree 2.
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e If vis an eigenvector:

AV = (BV),_,
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Some initial facts: recap

e Forany vector:

(BV)jy = ¥ — Vi

e Forany eigenvector:
A\ — v
Vil T Visg =V

e For any e’vector of unitary e’value:

(dy —2)¥' =0,V
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Unitary e'values are roots of unity
Theorem: if Bv = Av with |A| = 1, then dr suchthat A" = 1.

Sketch:

4, In general, we have \?? — 1, where p is the length of one of
these chains of nodes of degree 2, which must exist...
5. UNLESS the graphis a circle graph C;, =— \fF = 1.



More assumptions...

From now on:

finite

simple

undirected

unweighted

connected

minimum degree 2

not a circle graph (i.e. at least one node w degree 3+)

S
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Graph subdivisions

Definition: For a graph G, its p-th subdivision is the graph formed
by replacing each edge by a chain of length p.
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Theorem: Suppose \?? = 1, p # 1, then its support must be the
p-th subdivision of some graph.

The study of e'values that
are complex roots of unity is
reduced to the study of
graph subdivisions.

This is what's special about unitary e'values.
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E'vectors of subdivisions

Theorem: Let H be the p-th subdivision of some graph G s.t. Gis
not the subdivision of any other graph. Suppose X is a p-th root of
unity. Then GM () = |E| — |V| + 1.

Sketch:

e Stepl: MWisane'valueof G <= M\ isane’value of H.
e Step 2: build e’vectors of Husing e’vectors of G (and vice-versa).
e Step3: GMgx(A) = GMg(1) = |E| - |V|+ 1.



Recap

1. The support of unitary e’vector must be a graph subdivision.
2. The support can be detached (studied in isolation).
3. All e’values and e’vectors of subdivisions are accounted for.
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Some notation

Definition: True nodes and subdivision nodes.
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Gluing a subdivision

Identify some of the true nodes of S, with a nodein G.

Lemma: Take an eigenvector of .S,. Pad it with zeros. Then that
vector is “non-leaky” in H, i.e. (d; — 2) ¥ = 0, V.
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Some notation

Definition: if the subdivision is even, we also have middle nodes.
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Gluing a subdivision

Identify some of the true or middle nodes nodes of .S, with a node
in G.

Lemma: Take an eigenvector of .S, Pad it with zeros. Then that
vector is “non-leaky” in H,i.e. (d; — 2) v = 0, V.
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Algebraic multiplicity

o o o

(o]
0= = o .o ®
(o] 0. [o]

OOO [o]

n o o

ofo )
®—o o-0



Algebraic multiplicity

Theorem: Form H by gluing a circle graph of length k to
some graph G. Then the characteristic polynomial of H
satisfies:
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Algebraic multiplicity

Theorem: Form H by gluing a circle graph of length k to
some graph G. Then the characteristic polynomial of H
satisfies:

det (Bg — tI) = (¢** — 1) det (Bg — tI)—2 (t* — 1) det (Bg — Cj, — tI)
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