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○ Krzakala, et al. PNAS 110.52 (2013): 20935-20940.
○ Bordenave, et al. FOCS (2015).

● centrality
○ Martin, et al. Phys. Rev. E 90.5 (2014): 052808.
○ Morone & Makse. Nature 524.7563 (2015): 65-68.
○ Arrigo, et al. J. of Sci. Comp. 80.3 (2019): 1419-1437.
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○ Karrer, et al. Phys. Rev. Lett. 113.20 (2014): 208702.
○ Hamilton, & Pryadko. Phys. Rev. Lett. 113.20 (2014): 208701.
○ Shrestha, et al. Phys. Rev. E 92.2 (2015): 022821.
○ Castellano, & Pastor-Satorras. Phys. Rev. E 98.5 (2018): 052313.
○ Masuda, et al. J. of App. Math. 85.2 (2020): 214-230.
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related to certain 
subgraphs

yes!

maybe...

it (maybe) doesn’t!
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Let      be a graph with non-backtracking matrix     . Let 
and                 .

Tasks:
● study     ,
● compute the number of such     that are L.I. 

Recall: 
●      has one row/column for each oriented edge (size                     )
●     is a function of the oriented edges
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What’s more: it can be 
shown that nodes of degree 
one do not influence the 
non-zero eigenvalues.

From now on, assume the 
graph has minimum degree 2.
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More assumptions...
From now on: 

1. finite
2. simple
3. undirected
4. unweighted
5. connected
6. minimum degree 2
7. not a circle graph (i.e. at least one node w degree 3+)
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Graph subdivisions
Definition: For a graph    , its    -th subdivision is the graph formed 
by replacing each edge by a chain of length    .
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Theorem: Suppose                                 , then its support must be the
   -th subdivision of some graph.

The study of e’values that 
are complex roots of unity is 
reduced to the study of 
graph subdivisions.

This is what’s special about unitary e’values.
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2. The support can be detached (studied in isolation).
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Definition: if the subdivision is even, we also have middle nodes.

Some notation



Gluing a subdivision
Identify some of the true or middle nodes nodes of        with a node 
in     .

Lemma: Take an eigenvector of       . Pad it with zeros. Then that 
vector is “non-leaky” in      , i.e.                                        .
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