

Northeastern University Network Science Institute

Leo Torres* (leo@leotrs.com), Kevin S. Chan, Hanghang Tong, and Tina Eliassi-Rad

Abstract

- Spreading processes are characterized by a reproductive number R_0 . If R_0 is larger than a threshold θ , the process becomes an epidemic.
- It is known that $\theta \approx 1/\lambda$, where λ is the largest eigenvalue of the non-backtracking matrix.
- Node immunization removes nodes from the network to minimize λ (i.e. maximize θ).

- Let λ_c be the eigenvalue after immunizing node c. Then, $\lambda - \lambda_c$ is the eigen-gap of c.
- The best targets for immunization are nodes with large eigen-gaps. However, computing the eigen-gap is inefficient.
- In this work, we describe ways of identifying which nodes have the largest eigen-gaps.

Perturbation of non-backtracking eigenvalues

Supported in part by NSF IIS-1741197 and the Combat Capabilities Development Command Army Research Laboratory under Cooperative Agreement Number W911NF-13-2-0045.

Node Immunization with Non-backtracking Eigenvalues and X-Centrality

X-Centrality

Let z be a vector indexed by the oriented edges of the graph, and v be the principal eigenvector of *B*, then

- If z = v, $\sum_{i} z_{j \to i}$ equals the non-backtracking centrality of *i*.
- If z = 1, $\sum_{j} z_{j \to i}$ equals the degree of *i*.
- For arbitrary z, the **X-centrality** of c is

$$z^T P X z = \left(\sum_i a_{ic} \left(\sum_j z_{j
ightarrow i}
ight)
ight)^2 - \sum_i a_{ic} \left(\sum_j z_{j
ightarrow i}
ight)^2$$

Intuitively, the X-centrality measures the **diversity** of the values of the expression $\sum_{j} z_{j \rightarrow i}$ among neighbors of *c*.

Estimating the eigen-gap: theoretical results

Theorem: If *v* is the principal eigenvector of *B*', then

$$\lambda^2 \left(\lambda - \lambda_c
ight) pprox v^T P X v$$

Definition: $v^T P X v$ is called the X-non-backtracking centrality of c.

Theorem: The eigen-gap is upper bounded by

$$\Lambda^2 \left(\lambda - \lambda_c
ight) \leq \left(\mathbf{1}^T P X \mathbf{1}
ight) \left(Q_c
ight)$$

where Q_c is a constant close to 1.

Definition: $\mathbf{1}^T P X \mathbf{1}$ is called the X-degree centrality of *c*.

X-NB and X-degree can predict the eigen-gap

Algorithm: immunization with X-degree

Input: graph *G*, integer *p* Output: removed, an ordered list of nodes removed $\leftarrow \emptyset$ $XDeg[i] \leftarrow XDegree(G, i)$ for each node i while length(removed) node $\leftarrow \max_i XDeg[i]$ foreach i in G.neighbors[node] do G.neighbors[i].remove(node) foreach i in G.neighbors[node] do foreach j in G.neighbors[i] do $XDeg[j] \leftarrow XDegree(G, j)$ *G*.neighbors[node] $\leftarrow \emptyset$ removed.append(node) return removed

This algorithm can be implemented using one of two data structures: an indexed priority queue (IPQ), or a hash table (a.k.a. dictionary, Map). Each version is more efficient on different types of networks.

X-degree is more effective than baselines

	p = 1			p = 10			p = 100		
	degree	CI	Xdeg	degree	CI	Xdeg	degree	CI	Xdeg
AS-1	0.74	0.74	2.35	6.70	13.51	15.43	71.65	78.26	75.92
AS-2	2.02	2.02	4.00	17.09	22.36	28.17	87.60	89.61	87.02
Social-Slashdot	0.95	1.02	1.02	4.63	6.06	6.94	23.65	28.11	30.30
Social-Twitter	2.18	2.18	1.98	13.21	13.97	13.68	41.10	42.88	43.39
Transport-California	0.00	0.00	0.65	2.65	0.65	2.65	5.09	5.09	7.80
Transport-Sydney	0.00	0.00	0.00	0.00	0.00	6.50	0.00	7.37	9.49
Web-NotreDame	9.34	9.34	9.34	12.10	13.79	13.79	14.37	14.37	19.22

Average percentage eigen-drop on real networks (larger is better) when removing p = 1, 10, or 100 nodes. degree: baseline, CI: Collective Influence algorithm, Xdeg = X-degree

Conclusions and future work

1. The X-centrality framework provides an excellent way of performing node immunization by estimating eigen-gaps.

2. What other X-centralities can we define? Which are meaningful?

3. What about edge removal? Subgraph removal?

4. Non-backtracking eigenvalues have many applications: community detection, graph distance, etc. How do these change after node removal?