Non-backtracking eigenvalues and X-centrality

Leo Torres PhD candidate Network Science Institute, Northeastern University

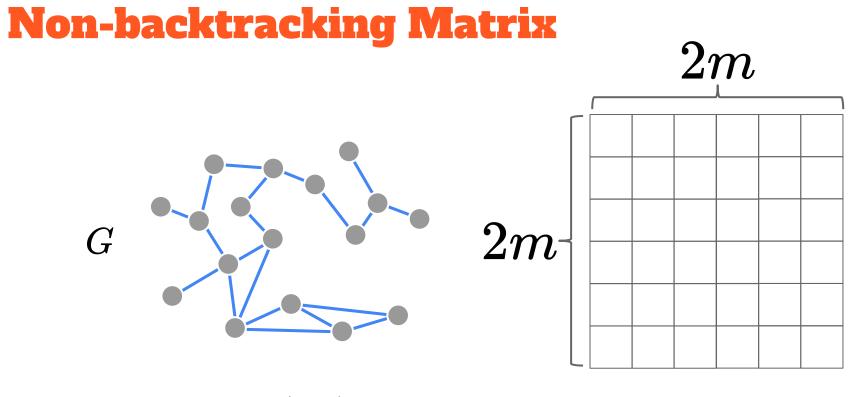
What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph? What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

Use this knowledge to define a **centrality measure** for **node immunization**.

Why care about the non-backtracking matrix and its **eigenvalues**?

What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

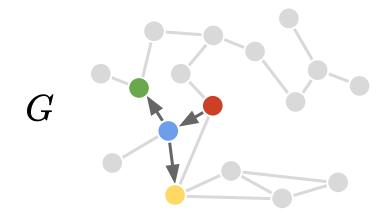
Use this knowledge to define a **centrality measure** for **node immunization**.



G = (V, E)|E| = m

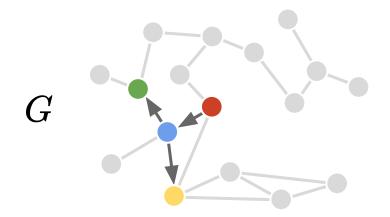
B

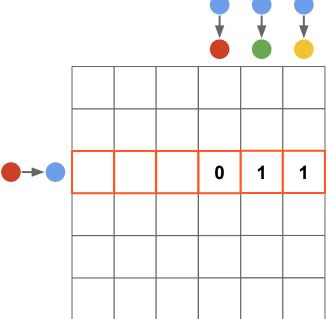
Non-backtracking Matrix



G = (V, E)|E| = m

Non-backtracking Matrix





G = (V, E)|E| = m

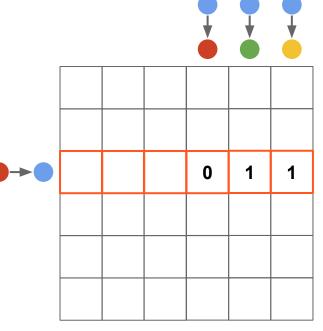
B

Non-backtracking eigenvalues

- length spectrum theory
 - o Torres, et al. App. Net. Sci. 4.1 (2019): 41.
- community detection
 - Krzakala, et al. PNAS 110.52 (2013): 20935-20940.
 - Bordenave, et al. FOCS (2015).
- graph distance & embedding
 - Torres, et al. App. Net. Sci. 4.1 (2019): 41.
- centrality
 - Martin, et al. Phys. Rev. E 90.5 (2014): 052808.
 - Morone & Makse. Nature 524.7563 (2015): 65-68.
 - Arrigo, et al. J. of Sci. Comp. 80.3 (2019): 1419-1437.

• epidemic thresholds (SIR, SIS)

- Karrer, et al. Phys. Rev. Lett. 113.20 (2014): 208702.
- Hamilton, & Pryadko. Phys. Rev. Lett. 113.20 (2014): 208701.
- Shrestha, et al. Phys. Rev. E 92.2 (2015): 022821.
- Castellano, & Pastor-Satorras. Phys. Rev. E 98.5 (2018): 052313.
- Masuda, et al. J. of App. Math. 85.2 (2020): 214-230.



B

Non-backtracking eigenvalues

- length spectrum theory
 - Torres, et al. App. Net. Sci. 4.1 (2019): 41.
- community detection
 - Krzakala, et al. PNAS 110.52 (2013): 20935-20940.
 - Bordenave, et al. FOCS (2015).
- graph distance & embedding
 - Torres, et al. App. et. Sci. 41 (2019): 41.
- centrality
 - Martin, et al. Phys. Rev. E 90.5 (2014): 052808.
 - o Morone & Makse. Nature 524.7563 (2015): 65-68.
 - Arrigo, et al. J. of Sci. Comp. 80.3 (2019): 1419-1437.

• epidemic thresholds (SIR, SIS)

- Karrer, et al. Phys. Rev. Lett. 113.20 (2014): 208702.
- Hamilton, & Pryadko. Phys. Rev. Lett. 113.20 (2014): 208701.
- Shrestha, et al. Phys. Rev. E 92.2 (2015): 022821.
- Castellano, & Pastor-Satorras. Phys. Rev. E 98.5 (2018): 052313.
- Masuda, et al. J. of App. Math. 85.2 (2020): 214-230.

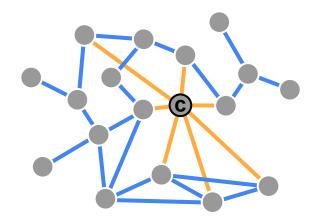
$oldsymbol{ heta} pprox 1/\lambda$

Why care about the non-backtracking matrix and its **eigenvalues**?

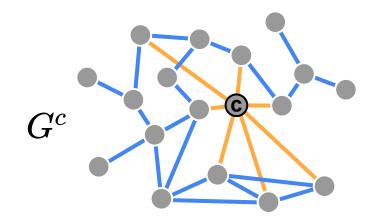
What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

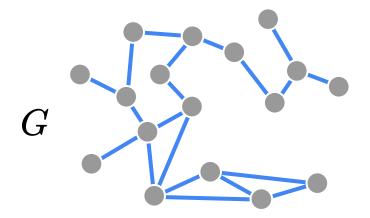
Use this knowledge to define a **centrality measure** for **node immunization**.

Some notation



Some notation

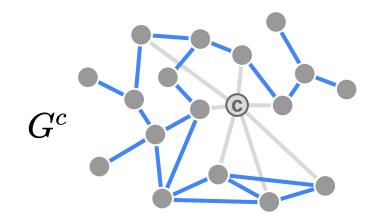


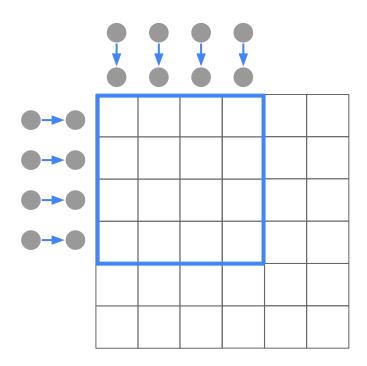


 B^c,λ_1^c

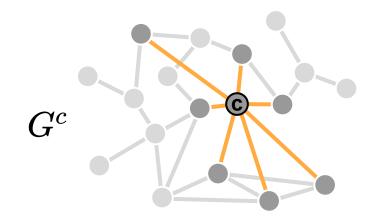
 B,λ_1

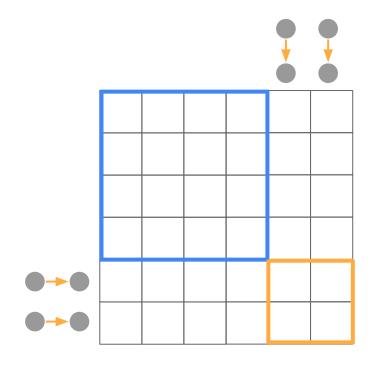
Block Matrix



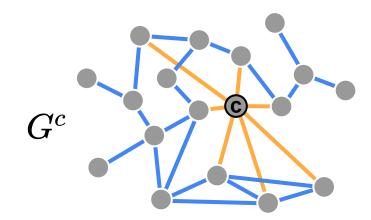


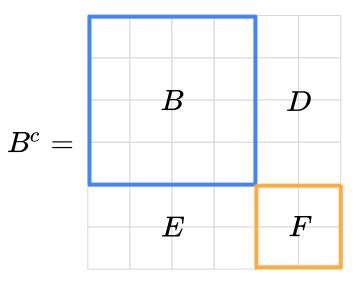
Block Matrix



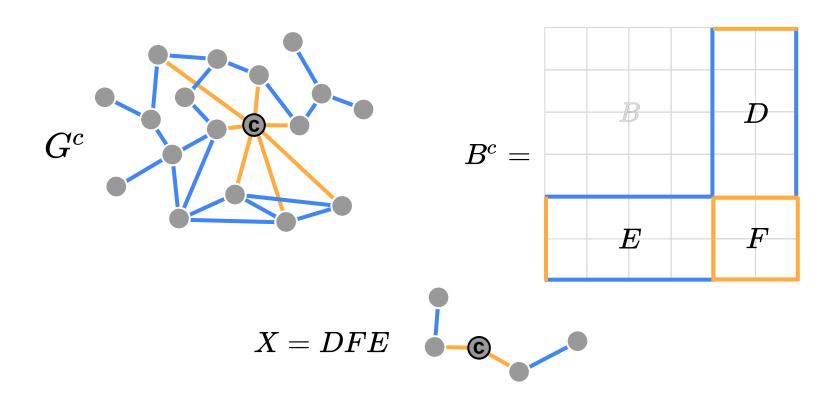


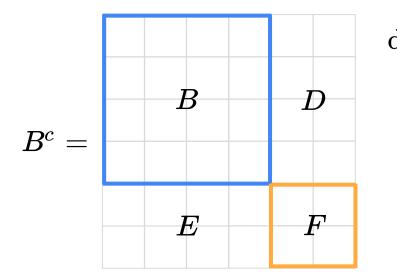
Block Matrix



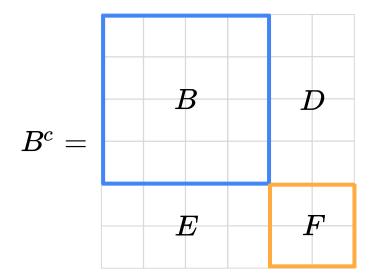


The X Matrix

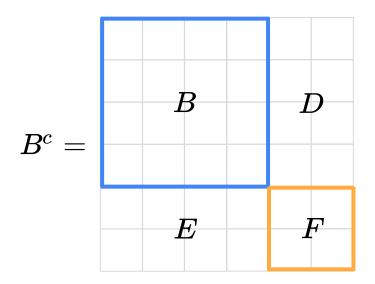




$$\det\left(B^c - tI\right) = 0$$



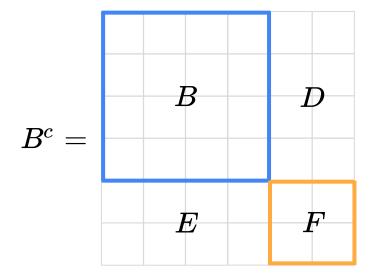
$$\det\left(B^{c}-tI
ight)=0$$
 , determinant of block matrices





$$\det\left(B^c-tI
ight)=0$$
 $figure$ determinant of block matrices $\det\left(B^c-tI
ight)=t^{2d}\det\left(B-tI
ight)\!\det\left(I+rac{YX}{t^2}
ight)$

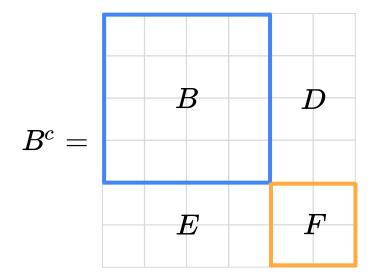
$$egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$$



$$\det \left(B^c-tI
ight)=0$$
 , determinant of block matrices $\det \left(B^c-tI
ight)=t^{2d}\det \left(B-tI
ight)\det \left(I+rac{YX}{t^2}
ight)$

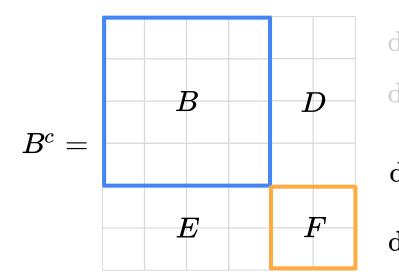
$$\det\left(I+rac{YX}{t^2}
ight)=0$$

$$egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$$



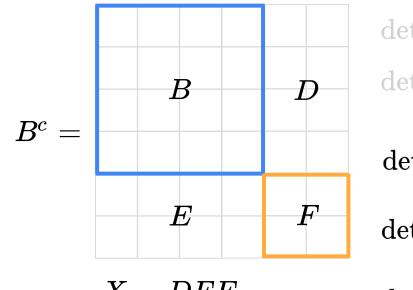
$$\det\left(I+rac{YX}{t^2}
ight)=0$$
 invariant

$$egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$$



$$\det\left(B^c-tI
ight)=0$$
 , determinant of block matrices $\det\left(B^c-tI
ight)=t^{2d}\det\left(B-tI
ight)\det\left(I+rac{YX}{t^2}
ight)$
 $\det\left(I+rac{YX}{t^2}
ight)=0$, linearize

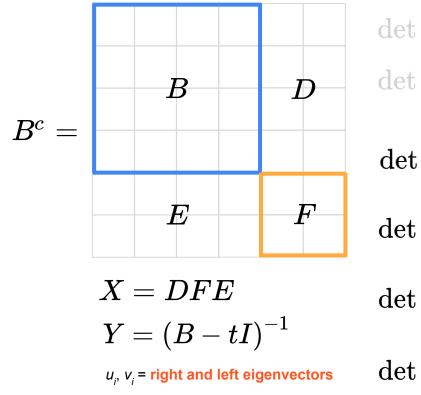
$$egin{aligned} X &= DFE \ Y &= (B-tI)^{-1} \end{aligned}$$



$$\det\left(B^c-tI
ight)=0$$
 , determinant of block matrices $\det\left(B^c-tI
ight)=t^{2d}\det\left(B-tI
ight)\det\left(I+rac{YX}{t^2}
ight)$

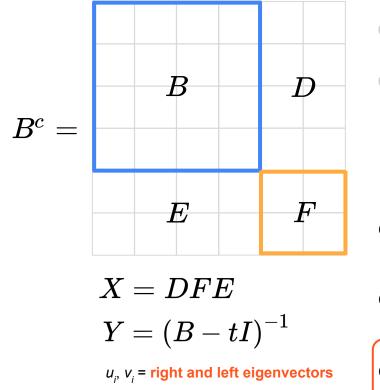
$$\det\left(I+rac{YX}{t^2}
ight)=0$$
 inverses $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}Tr\left(YX
ight)+\ldots$ $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}\sum_irac{v_i^TXu_i}{t-\lambda_i}+\ldots$

 $egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$



$$\det\left(I+rac{YX}{t^2}
ight)=0$$
 inearize $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}Tr\left(YX
ight)+\ldots$

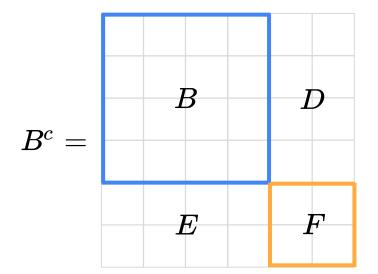
$$\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}\sum_irac{v_i^{+}Xu_i}{t-\lambda_i}+\dots$$
 $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}rac{v_1^{T}Xu_1}{t-\lambda_1}+\dots$



$$\det\left(I+rac{YX}{t^2}
ight)=0$$
 invariance $\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}Tr\left(YX
ight)+\ldots$

$$\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}\sum_irac{v_i^TXu_i}{t-\lambda_i}{+}{\dots}$$

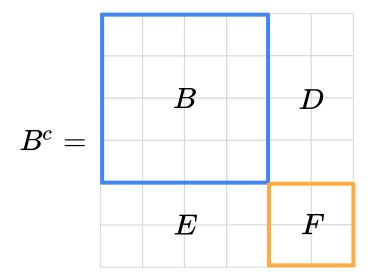
$$\det\left(I+rac{YX}{t^2}
ight)=1+rac{1}{t^2}rac{v_1^TXu_1}{t-\lambda_1}+\dots$$



$$egin{aligned} X &= DFE \ Y &= \left(B - tI
ight)^{-1} \end{aligned}$$

$$t^2(t-\lambda_1)+v_1^TXu_1=0$$

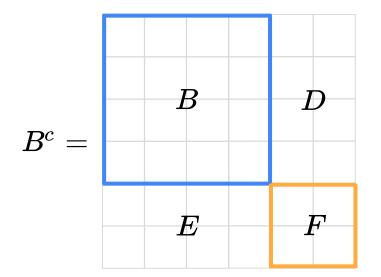
XNB Centrality



$$t^2(t-\lambda_1)+v_1^TXu_1=0$$

 $egin{aligned} X &= DFE \ Y &= (B-tI)^{-1} \end{aligned}$

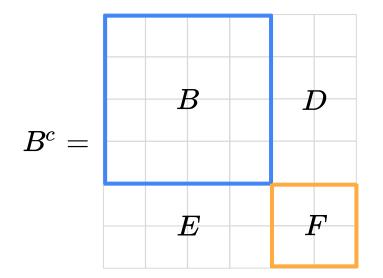
XNB Centrality



$$t^2(t-\lambda_1)+v_1^TXu_1=0$$

$$egin{aligned} X &= DFE \ Y &= (B-tI)^{-1} \end{aligned}$$

XNB Centrality

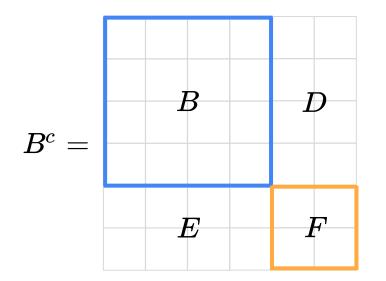


$$t^2(t-\lambda_1)+v_1^TXu_1=0$$

$$v_1^T X u_1 \leq \mathbf{1}^T X \mathbf{1} \left(1{+}{\dots}
ight)$$

$$egin{aligned} X &= DFE \ Y &= (B-tI)^{-1} \end{aligned}$$

X-deg Centrality



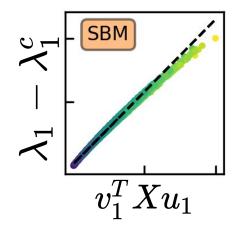
$$t^{2}(t - \lambda_{1}) + v_{1}^{T}Xu_{1} = 0$$

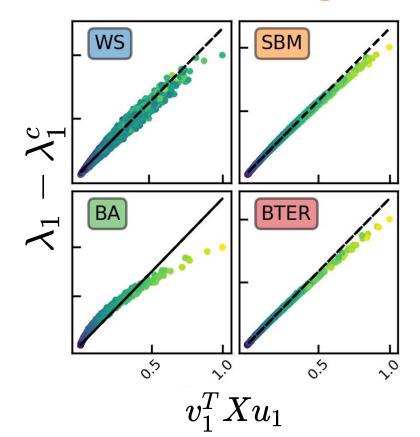
$$v_1^T X u_1 \leq \mathbf{1}^T X \mathbf{1} (1+...)$$

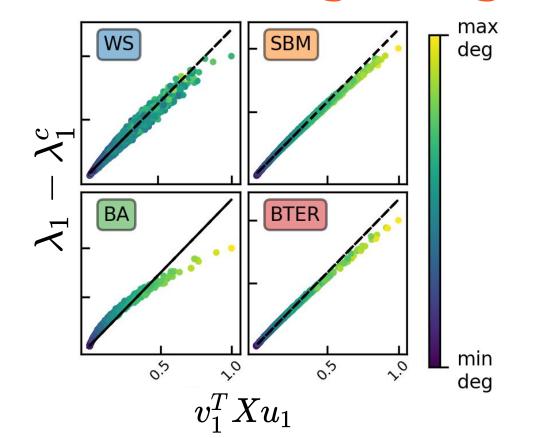
- $egin{aligned} X &= DFE \ Y &= \left(B tI
 ight)^{-1} \end{aligned}$
- u_i , v_j = right and left eigenvectors

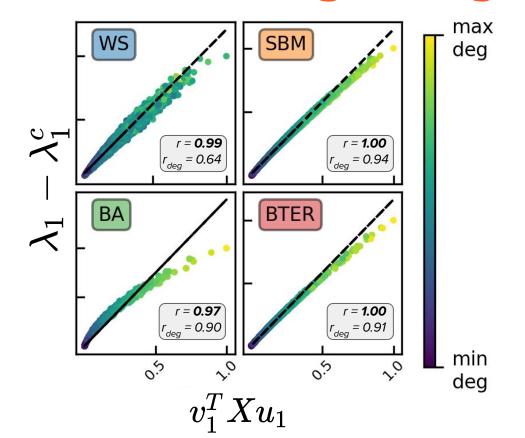
What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

It decreases by a quantity that is correlated to $v_1^T X u_1$









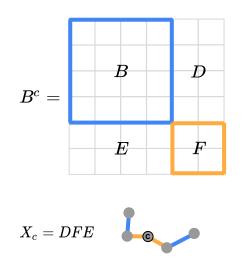
Why care about the non-backtracking matrix and its **eigenvalues**?

What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

Use this knowledge to define a **centrality measure** for **node immunization**.

XNB for different target nodes

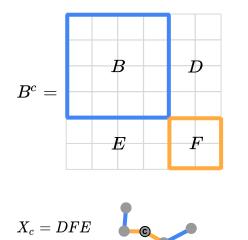
1. Choose a target node ${\boldsymbol{\mathsf{c}}}$



XNB for different target nodes

1. Choose a target node ${\bf c}$

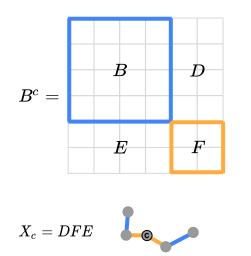
2. Compute $u_{\eta}v_{\eta}$ and XNB



 $XNB(c) = v_1^T X_c u_1$

XNB for different target nodes

1. Choose a target node ${\bf c}$



2. Compute $u_{\eta}v_{\eta}$ and XNB

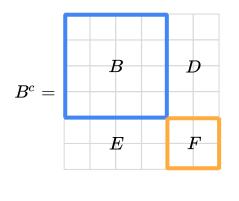
3. Alternative way

$$XNB(c) = v_1^T X_c u_1$$

$$XNB(c) = ig(\sum_i a_{ci} v_1^iig)^2 - \sum_i a_{ci}ig(v_1^iig)^2
onumber v_1^i$$
 is the NB-centrality

X-deg for different target nodes

1. Choose a target node ${\boldsymbol{\mathsf{c}}}$



$$X_c = DFE$$

2. Compute $u_{\eta}v_{\eta}$ and XNB

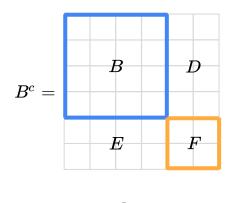
$$XNB(c) = v_1^T X_c u_1$$
 $XNB(c) = \left(\sum_i a_{ci} v_1^i
ight)^2 - \sum_i a_{ci} \left(v_1^i
ight)^2$

 v_1^i is the NB-centrality

 $X deg(c) = 1^T X_c 1$

X-deg for different target nodes

1. Choose a target node ${\boldsymbol{\mathsf{c}}}$



$$X_c = DFE$$

2. Compute $u_{\eta}v_{\eta}$, and XNB

 $XNB(c) = v_1^T X_c u_1$

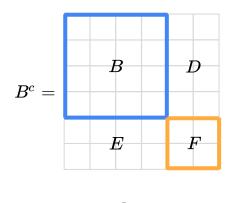
3. Alternative way

 $XNB(c) = \left(\sum_i a_{ci} v_1^i
ight)^2 - \sum_i a_{ci} \left(v_1^i
ight)^2
onumber v_1^i$ is the NB-centrality

$$egin{aligned} Xdeg(c) &= 1^T X_c 1 & Xdeg(c) &= \left(\sum_i a_{ci} d_i'
ight)^2 - \sum_i a_{ci} \left(d_i'
ight)^2 \ d_i' &= deg(i) - 1 \ ext{``excess degree"} \end{aligned}$$

X-deg for different target nodes

1. Choose a target node ${\boldsymbol{\mathsf{c}}}$



$$X_c = DFE$$

2. Compute $u_{\eta}v_{\eta}$ and XNB

 $XNB(c) = v_1^T X_c u_1$

3. Alternative way

$$XNB(c) = ig(\sum_i a_{ci} v_1^iig)^2 - \sum_i a_{ci} ig(v_1^iig)^2
onumber v_1^i$$
 is the NB-centrality

$$egin{aligned} Xdeg(c) &= 1^T X_c 1 & Xdeg(c) &= \left(\sum_i a_{ci} d_i'\right)^2 - \sum_i a_{ci} \left(d_i'\right)^2 \ d_i' &= deg(i) - 1 \ ``excess degree'' \end{aligned}$$

Table 1: Average percentage eigen-drop (larger is better)

BA	$1\% \\ 2\% \\ 3\%$
BTER	$1\% \\ 2\% \\ 3\%$
SBM	$rac{1\%}{2\%}$
WS	$1\% \\ 2\% \\ 3\%$

Table 1: Average percentage eigen-drop (larger is better) on synthetic graphs after removing 1%, 2%, and 3%

NS: Chen Chen et al. TKDE, 28 (1):113–126 (2016). **CI:** Morone & Makse. Nature, 524(7563):65 (2015).

	degree	NS	CI	Xdeg	NB	XNB
1%						
BA 2%						
3%						
1%						
BTER 2%						
3%						
1%						
SBM 2%						
3%						
1%						
WS 2%						
3%						

Table 1: Average percentage eigen-drop (larger is better) on synthetic graphs after removing 1%, 2%, and 3%

NS: Chen Chen et al. TKDE, 28 (1):113–126 (2016). **CI:** Morone & Makse. Nature, 524(7563):65 (2015).

	degree	NS	CI	Xdeg	NB	XNB
1%	62.76	61.44	62.88	62.90	62.92	62.91
BA 2%	68.84	66.94	68.97	68.99	69.01	69.01
3%	72.42	70.09	72.56	72.57	72.59	72.59
1%	6.28	6.40	6.41	6.45	6.46	6.46
BTER 2%	10.60	10.72	10.80	10.85	10.86	10.86
3%	14.31	14.40	14.55	14.61	14.63	14.63
1%	3.31	3.41	3.40	3.43	3.44	3.44
SBM 2%	6.00	6.16	6.19	6.23	6.25	6.25
3%	8.52	8.66	8.76	8.80	8.82	8.82
1%	1.41	1.17	1.50	1.52	1.63	1.63
WS 2%	2.52	2.09	2.97	2.98	3.11	3.11
3%	3.66	2.94	4.41	4.41	4.57	4.58

Table 1: Average percentage eigen-drop (larger is better) on synthetic graphs after removing 1%, 2%, and 3%

NS: Chen Chen et al. TKDE, 28 (1):113–126 (2016). **CI:** Morone & Makse. Nature, 524(7563):65 (2015).

G	degree	NS	CI	Xdeg	NB	XNB
1% BA 2% 3%	$62.76 \\ 68.84 \\ 72.42$	61.44 66.94 70.09	62.88 68.97 72.56	62.90 68.99 72.57	$\begin{array}{c} 62.92 \\ 69.01 \\ 72.59 \end{array}$	$62.91 \\ 69.01 \\ 72.59$
$\begin{array}{c} 1\% \\ {\rm BTER} \ 2\% \\ 3\% \end{array}$	$6.28 \\ 10.60 \\ 14.31$	$6.40 \\ 10.72 \\ 14.40$	$6.41 \\ 10.80 \\ 14.55$	$6.45 \\ 10.85 \\ 14.61$	$6.46 \\ 10.86 \\ 14.63$	$6.46 \\ 10.86 \\ 14.63$
${{\rm SBM}}\ {{1\%}\over{2\%}}\ {{3\%}}$	$3.31 \\ 6.00 \\ 8.52$	$3.41 \\ 6.16 \\ 8.66$	$3.40 \\ 6.19 \\ 8.76$	$3.43 \\ 6.23 \\ 8.80$	$3.44 \\ 6.25 \\ 8.82$	$3.44 \\ 6.25 \\ 8.82$
${f WS} {f 2\%} {f 2\%} {f 3\%}$	$ 1.41 \\ 2.52 \\ 3.66 $	$1.17 \\ 2.09 \\ 2.94$	$1.50 \\ 2.97 \\ 4.41$	$1.52 \\ 2.98 \\ 4.41$	$1.63 \\ 3.11 \\ 4.57$	$1.63 \\ 3.11 \\ 4.58$

Table 1: Average percentage eigen-drop (larger is better) on synthetic graphs after removing 1%, 2%, and 3%

AS-1 AS-2 Social-Slashdot Social-Twitter Transport-California Transport-Sydney Web-NotreDame

AS-1 AS-2 Social-Slashdot Social-Twitter Transport-California Transport-Sydney Web-NotreDame

	p = 1			
	degree	CI	Xdeg	
AS-1	0.74	0.74	2.35	
AS-2	2.02	2.02	4.00	
Social-Slashdot	0.95	1.02	1.02	
Social-Twitter	2.18	2.18	1.98	
Transport-California	0.00	0.00	0.65	
Transport-Sydney	0.00	0.00	0.00	
Web-NotreDame	9.34	9.34	9.34	

	p = 1				
	degree	CI	Xdeg		
AS-1	0.74	0.74	2.35		
AS-2	2.02	2.02	4.00		
Social-Slashdot	0.95	1.02	1.02		
Social-Twitter	2.18	2.18	1.98		
Transport-California	0.00	0.00	0.65		
Transport-Sydney	0.00	0.00	0.00		
Web-NotreDame	9.34	9.34	9.34		

	p = 1			p = 10			
	degree	CI	Xdeg	degree	CI	Xdeg	
AS-1	0.74	0.74	2.35	6.70	13.51	15.43	
AS-2	2.02	2.02	4.00	17.09	22.36	28.17	
Social-Slashdot	0.95	1.02	1.02	4.63	6.06	6.94	
Social-Twitter	2.18	2.18	1.98	13.21	13.97	13.68	
Transport-California	0.00	0.00	0.65	2.65	0.65	2.65	
Transport-Sydney	0.00	0.00	0.00	0.00	0.00	6.50	
Web-NotreDame	9.34	9.34	9.34	12.10	13.79	13.79	

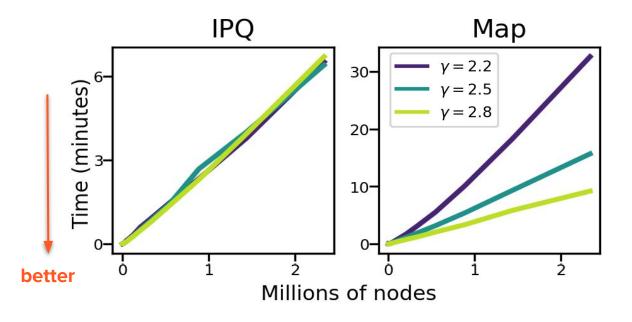
	p = 1			p = 10			p = 100		
	degree	CI	Xdeg	degree	CI	Xdeg	degree	CI	Xdeg
AS-1	0.74	0.74	2.35	6.70	13.51	15.43	71.65	78.26	75.92
AS-2	2.02	2.02	4.00	17.09	22.36	28.17	87.60	89.61	87.02
Social-Slashdot	0.95	1.02	1.02	4.63	6.06	6.94	23.65	28.11	30.30
Social-Twitter	2.18	2.18	1.98	13.21	13.97	13.68	41.10	42.88	43.39
Transport-California	0.00	0.00	0.65	2.65	0.65	2.65	5.09	5.09	7.80
Transport-Sydney	0.00	0.00	0.00	0.00	0.00	6.50	0.00	7.37	9.49
Web-NotreDame	9.34	9.34	9.34	12.10	13.79	13.79	14.37	14.37	19.22

Algorithm: Immunization with XNB

```
Input: graph G, integer p
Output: removed, an ordered list of nodes
removed \leftarrow \emptyset
XNB [i] \leftarrow XCent (G, i) for each node i
while length(removed) < p do
    node \leftarrow \max_i \text{XNB}[i]
    foreach i in G.neighbors[node] do
        G.neighbors[i].remove(node)
    foreach i in G.neighbors[node] do
        foreach j in G.neighbors[i] do
           XNB [j] \leftarrow XCent(G, i)
    G.neighbors[node] \leftarrow \emptyset
    removed.append(node)
return removed
```

This algorithm can be implemented using one of two data structures: an indexed priority queue (IPQ), or a hash table (a.k.a. dictionary, Map). Each version is more efficient on different types of networks.

Algorithm: Scalability



Immunization on graphs with **heterogeneous degree distribution** Real graphs typically have $2 < \gamma < 3$.

Future research

Why care about the non-backtracking matrix and its **eigenvalues**?

What happens to the leading eigenvalue of the **non-backtracking** matrix when a node is removed from the graph?

Use this knowledge to define a **centrality measure** for **node immunization**.

Cool, now what?

$$Xdeg(c) = \left(\sum_{i} a_{ci} d'_{i}
ight)^{2} - \sum_{i} a_{ci} \left(d'_{i}
ight)^{2}$$

$$d_i' = deg(i) - 1$$

"excess degree"

$$Xdeg(c) = \left(\sum_{i} a_{ci} d'_{i}
ight)^{2} - \sum_{i} a_{ci} \left(d'_{i}
ight)^{2}$$

$$-Var = \left(rac{1}{\deg(c)}\sum_{i}a_{ci}d_{i}'
ight)^{2} - rac{1}{\deg(c)}\sum_{i}a_{ci}\left(d_{i}'
ight)^{2}$$

$$d_i' = deg(i) - 1$$
 "excess degree"

$$Xdeg(c) = \left(\sum_{i} a_{ci} d'_{i}
ight)^{2} - \sum_{i} a_{ci} \left(d'_{i}
ight)^{2}$$

$$-Var = \left(rac{1}{\deg(c)} \sum_i a_{ci} d'_i
ight)^2 - rac{1}{\deg(c)} \sum_i a_{ci} \left(d'_i
ight)^2$$

$$d_i' = deg(i) - 1$$
 "excess degree"

$$Xdeg(c) = \left(\sum_{i} a_{ci} d'_{i}
ight)^{2} - \sum_{i} a_{ci} \left(d'_{i}
ight)^{2}$$

$$-Var = \left(rac{1}{\deg(c)}\sum_{i}a_{ci}d_{i}'
ight)^{2} - rac{1}{\deg(c)}\sum_{i}a_{ci}\left(d_{i}'
ight)^{2}$$

$$CI(c) = d_c' \sum_i a_{ci} d_i'$$

 $d_i' = deg(i) - 1$ "excess degree"

 $Xdeg(c) = \left(\sum_{i} a_{ci} d'_{i}
ight)^{2} - \sum_{i} a_{ci} \left(d'_{i}
ight)^{2}$

 $-Var = \left(\frac{1}{\deg(c)}\sum_{i}a_{ci}d'_{i}\right)^{2} - \frac{1}{\deg(c)}\sum_{i}a_{ci}\left(d'_{i}\right)^{2}$

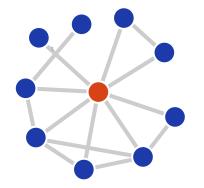
 $CI(c) = d'_c \sum_i a_{ci} d'_i$

Future work:

 What about higher moments?

 $d'_i = deg(i) - 1$ "excess degree"

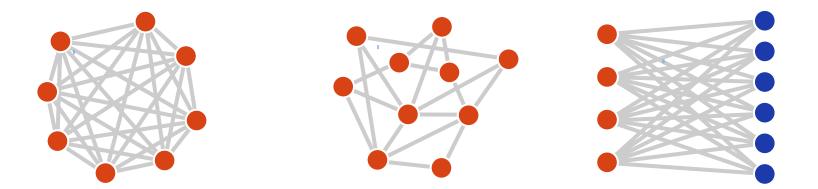
X-centrality and localization



The **adjacency** eigenvector is disproportionately **localized** on the **red node**.

Martin, et al. Physical review E 90.5 (2014): 052808.

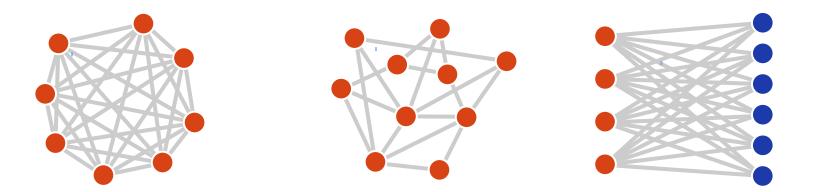
X-centrality and localization



The **non-backtracking** eigenvector is

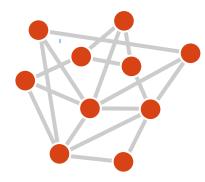
disproportionately localized on the red nodes.

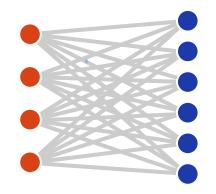
Martin, et al. *Physical review E* 90.5 (2014): 052808. Pastor-Satorras & Castellano. *Preprint* arXiv:2005.03913 (2020).



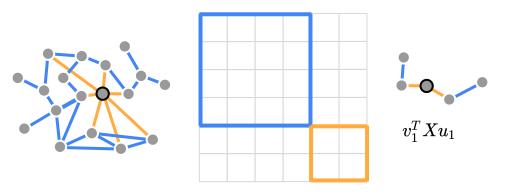
The non-backtracking eigenvector is disproportionately localized on the red nodes.

The degrees of the **neighbors** of the **red nodes** have **low variance** – thus the red nodes have **high X-deg**.





Generate a graph with a subset of nodes with **high X-degree**. Find a **localized eigenvector**?



- The leading eigenvalue decreases by an amount correlated to X-NB.
- **New techniques** to analyze the non-backtracking matrix.
- Using X-centrality is **slightly** better in general, **largely** better in some cases.
- Connections with moments of neighbors' degree distribution, localization, etc.

Paper: https://arxiv.org/abs/2002.12309
Code:https://github.com/leotrs/inbox

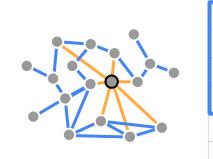
Gracias!

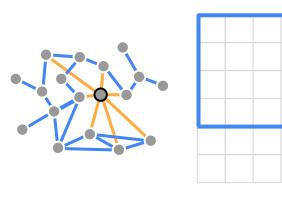
- The leading eigenvalue decreases by an amount correlated to X-NB.
- **New techniques** to analyze the non-backtracking matrix.
- Using X-centrality is **slightly** better in general, **largely** better in some cases.
- Connections with moments of neighbors' degree distribution, localization, etc.

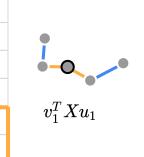
Paper: https://arxiv.org/abs/2002.12309 Code:https://github.com/leotrs/inbox

Hanghang Tong, UIUC

 $v_1^T X u_1$







Kevin S. Chan, ARL

Currently on the **job market** as a **postdoc** or **assistant professor** at the intersection of network science, computer science, and mathematics. Please get in touch!

> www.leotrs.com leo@leotrs.com @_leotrs

Hanghang Tong, UIUC

Tina Eliassi-Rad, NEU